在 C/C++ 中使用 TensorFlow 预训练好的模型—— 直接调用 C++ 接口实现
生活随笔
收集整理的這篇文章主要介紹了
在 C/C++ 中使用 TensorFlow 预训练好的模型—— 直接调用 C++ 接口实现
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
現在的深度學習框架一般都是基于 Python 來實現,構建、訓練、保存和調用模型都可以很容易地在 Python 下完成。但有時候,我們在實際應用這些模型的時候可能需要在其他編程語言下進行,本文將通過直接調用 TensorFlow 的 C/C++ 接口來導入 TensorFlow 預訓練好的模型。
1.環境配置 點此查看 C/C++ 接口的編譯
2. 導入預定義的圖和訓練好的參數值
// set up your input pathsconst string pathToGraph = "/home/senius/python/c_python/test/model-10.meta";const string checkpointPath = "/home/senius/python/c_python/test/model-10";auto session = NewSession(SessionOptions()); // 創建會話if (session == nullptr){throw runtime_error("Could not create Tensorflow session.");}Status status;// Read in the protobuf graph we exportedMetaGraphDef graph_def;status = ReadBinaryProto(Env::Default(), pathToGraph, &graph_def);  // 導入圖模型if (!status.ok()){throw runtime_error("Error reading graph definition from " + pathToGraph + ": " + status.ToString());}// Add the graph to the sessionstatus = session->Create(graph_def.graph_def());  // 將圖模型加入到會話中if (!status.ok()){throw runtime_error("Error creating graph: " + status.ToString());}// Read weights from the saved checkpointTensor checkpointPathTensor(DT_STRING, TensorShape());checkpointPathTensor.scalar<std::string>()() = checkpointPath; // 讀取預訓練好的權重status = session->Run({{graph_def.saver_def().filename_tensor_name(), checkpointPathTensor},}, {},{graph_def.saver_def().restore_op_name()}, nullptr);if (!status.ok()){throw runtime_error("Error loading checkpoint from " + checkpointPath + ": " + status.ToString());} 復制代碼3. 準備測試數據
const string filename = "/home/senius/python/c_python/test/04t30t00.npy";//Read TXT data to arrayfloat Array[1681*41];ifstream is(filename);for (int i = 0; i < 1681*41; i++){is >> Array[i];}is.close();tensorflow::Tensor input_tensor(tensorflow::DT_FLOAT, tensorflow::TensorShape({1, 41, 41, 41, 1}));auto input_tensor_mapped = input_tensor.tensor<float, 5>();float *pdata = Array;// copying the data into the corresponding tensorfor (int x = 0; x < 41; ++x)//depth{for (int y = 0; y < 41; ++y) {for (int z = 0; z < 41; ++z) {const float *source_value = pdata + x * 1681 + y * 41 + z;input_tensor_mapped(0, x, y, z, 0) = *source_value;}}} 復制代碼- 本例中輸入數據是一個 [None, 41, 41, 41, 1] 的張量,我們需要先從 TXT 文件中讀出測試數據,然后正確地填充到張量中去。
4. 前向傳播得到預測值
std::vector<tensorflow::Tensor> finalOutput;std::string InputName = "X"; // Your input placeholder's namestd::string OutputName = "sigmoid"; // Your output tensor's namevector<std::pair<string, Tensor> > inputs;inputs.push_back(std::make_pair(InputName, input_tensor));// Fill input tensor with your input datasession->Run(inputs, {OutputName}, {}, &finalOutput);auto output_y = finalOutput[0].scalar<float>();std::cout << output_y() << "\n"; 復制代碼- 通過給定輸入和輸出張量的名字,我們可以將測試數據傳入到模型中,然后進行前向傳播得到預測值。
5. 一些問題
- 本模型是在 TensorFlow 1.4 下訓練的,然后編譯 TensorFlow 1.4 的 C++ 接口可以正常調用模型,但若是想調用更高版本訓練好的模型,則會報錯,據出錯信息猜測可能是高版本的 TensorFlow 中添加了一些低版本沒有的函數,所以不能正常運行。
- 若是編譯高版本的 TensorFlow ,比如最新的 TensorFlow 1.11 的 C++ 接口,則無論是調用舊版本訓練的模型還是新版本訓練的模型都不能正常運行。出錯信息如下:Error loading checkpoint from /media/lab/data/yongsen/Tensorflow_test/test/model-40: Invalid argument: Session was not created with a graph before Run()!,網上暫時也查不到解決辦法,姑且先放在這里。
6. 完整代碼
#include </home/senius/tensorflow-r1.4/bazel-genfiles/tensorflow/cc/ops/io_ops.h> #include </home/senius/tensorflow-r1.4/bazel-genfiles/tensorflow/cc/ops/parsing_ops.h> #include </home/senius/tensorflow-r1.4/bazel-genfiles/tensorflow/cc/ops/array_ops.h> #include </home/senius/tensorflow-r1.4/bazel-genfiles/tensorflow/cc/ops/math_ops.h> #include </home/senius/tensorflow-r1.4/bazel-genfiles/tensorflow/cc/ops/data_flow_ops.h>#include <tensorflow/core/public/session.h> #include <tensorflow/core/protobuf/meta_graph.pb.h> #include <fstream>using namespace std; using namespace tensorflow; using namespace tensorflow::ops;int main() {// set up your input pathsconst string pathToGraph = "/home/senius/python/c_python/test/model-10.meta";const string checkpointPath = "/home/senius/python/c_python/test/model-10";auto session = NewSession(SessionOptions());if (session == nullptr){throw runtime_error("Could not create Tensorflow session.");}Status status;// Read in the protobuf graph we exportedMetaGraphDef graph_def;status = ReadBinaryProto(Env::Default(), pathToGraph, &graph_def);if (!status.ok()){throw runtime_error("Error reading graph definition from " + pathToGraph + ": " + status.ToString());}// Add the graph to the sessionstatus = session->Create(graph_def.graph_def());if (!status.ok()){throw runtime_error("Error creating graph: " + status.ToString());}// Read weights from the saved checkpointTensor checkpointPathTensor(DT_STRING, TensorShape());checkpointPathTensor.scalar<std::string>()() = checkpointPath;status = session->Run({{graph_def.saver_def().filename_tensor_name(), checkpointPathTensor},}, {},{graph_def.saver_def().restore_op_name()}, nullptr);if (!status.ok()){throw runtime_error("Error loading checkpoint from " + checkpointPath + ": " + status.ToString());}cout << 1 << endl;const string filename = "/home/senius/python/c_python/test/04t30t00.npy";//Read TXT data to arrayfloat Array[1681*41];ifstream is(filename);for (int i = 0; i < 1681*41; i++){is >> Array[i];}is.close();tensorflow::Tensor input_tensor(tensorflow::DT_FLOAT, tensorflow::TensorShape({1, 41, 41, 41, 1}));auto input_tensor_mapped = input_tensor.tensor<float, 5>();float *pdata = Array;// copying the data into the corresponding tensorfor (int x = 0; x < 41; ++x)//depth{for (int y = 0; y < 41; ++y) {for (int z = 0; z < 41; ++z) {const float *source_value = pdata + x * 1681 + y * 41 + z; // input_tensor_mapped(0, x, y, z, 0) = *source_value;input_tensor_mapped(0, x, y, z, 0) = 1;}}}std::vector<tensorflow::Tensor> finalOutput;std::string InputName = "X"; // Your input placeholder's namestd::string OutputName = "sigmoid"; // Your output placeholder's namevector<std::pair<string, Tensor> > inputs;inputs.push_back(std::make_pair(InputName, input_tensor));// Fill input tensor with your input datasession->Run(inputs, {OutputName}, {}, &finalOutput);auto output_y = finalOutput[0].scalar<float>();std::cout << output_y() << "\n";return 0; } 復制代碼- Cmakelist?文件如下
獲取更多精彩,請關注「seniusen」!
總結
以上是生活随笔為你收集整理的在 C/C++ 中使用 TensorFlow 预训练好的模型—— 直接调用 C++ 接口实现的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Mysql-高性能索引
- 下一篇: MariaDB数据库日志