日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

pandas学习笔记——阅读官方文档

發(fā)布時間:2023/12/10 编程问答 30 豆豆
生活随笔 收集整理的這篇文章主要介紹了 pandas学习笔记——阅读官方文档 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

1. 初始化

(1)生成簡單序列pd.Series

>>>s = pd.Series([1,3,5,np.nan,6,8]) >>>s 0 1.0 1 3.0 2 5.0 3 NaN #注意空 4 6.0 5 8.0 dtype: float64

(2)生成日期序列pd.date_range

>>>dates = pd.date_range('20130101', periods=6) >>> dates DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04','2013-01-05', '2013-01-06'],dtype='datetime64[ns]', freq='D')

(3)結(jié)構(gòu)

>>>df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD')) # index 表示序號,columns表示列名稱>>> dfA B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 2013-01-06 -0.673690 0.113648 -1.478427 0.524988

?

>>>: df2 = pd.DataFrame({ 'A' : 1.,....: 'B' : pd.Timestamp('20130102'),....: 'C' : pd.Series(1,index=list(range(4)),dtype='float32'),....: 'D' : np.array([3] * 4,dtype='int32'),....: 'E' : pd.Categorical(["test","train","test","train"]),....: 'F' : 'foo' })....: >>>: df2A B C D E F 0 1.0 2013-01-02 1.0 3 test foo 1 1.0 2013-01-02 1.0 3 train foo 2 1.0 2013-01-02 1.0 3 test foo 3 1.0 2013-01-02 1.0 3 train foo

?

2. 觀察數(shù)據(jù)

(1)前n個(head),后n個(tail)

>>> df.head(2)A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236>>> df.tail(3)A B C D 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 2013-01-06 -0.673690 0.113648 -1.478427 0.524988

(2)展示序號(index)、列號(columns)、值(values)

>>>df.index DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04','2013-01-05', '2013-01-06'],dtype='datetime64[ns]', freq='D')>>> df.columns Index(['A', 'B', 'C', 'D'], dtype='object')>>> df.values array([[ 0.4691, -0.2829, -1.5091, -1.1356],[ 1.2121, -0.1732, 0.1192, -1.0442],[-0.8618, -2.1046, -0.4949, 1.0718],[ 0.7216, -0.7068, -1.0396, 0.2719],[-0.425 , 0.567 , 0.2762, -1.0874],[-0.6737, 0.1136, -1.4784, 0.525 ]])

(3)快速數(shù)據(jù)統(tǒng)計describe

>>>df.describe() A B C D count 6.000000 6.000000 6.000000 6.000000 mean 0.073711 -0.431125 -0.687758 -0.233103 std 0.843157 0.922818 0.779887 0.973118 min -0.861849 -2.104569 -1.509059 -1.135632 25% -0.611510 -0.600794 -1.368714 -1.076610 50% 0.022070 -0.228039 -0.767252 -0.386188 75% 0.658444 0.041933 -0.034326 0.461706 max 1.212112 0.567020 0.276232 1.071804

(4)轉(zhuǎn)置df.T

(5)按軸排序

降序:ascending=False 升序:ascending=True 橫軸: df.sort_index(axis=1, ascending=False) 縱軸: df.sort_index(axis=0, ascending=False)
>>>df.sort_index(axis=1, ascending=False)D C B A 2013-01-01 -1.135632 -1.509059 -0.282863 0.469112 2013-01-02 -1.044236 0.119209 -0.173215 1.212112 2013-01-03 1.071804 -0.494929 -2.104569 -0.861849 2013-01-04 0.271860 -1.039575 -0.706771 0.721555 2013-01-05 -1.087401 0.276232 0.567020 -0.424972 2013-01-06 0.524988 -1.478427 0.113648 -0.673690

(6)按值排序

>>> df.sort_values(by='B')A B C D 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 2013-01-05 -0.424972 0.567020 0.276232 -1.087401

?

3. 選擇, 與matlab類似

選擇某列(?df.A ==?df['A']

選擇某個區(qū)間(df[0:3])

按標簽選擇(df.loc[dates[0]])

?

4. 數(shù)據(jù)缺失

用nan表示

舍去丟失數(shù)據(jù)的行 df.dropna(how='any')

補全丟失的數(shù)據(jù) df.fillna(value=5)

判斷是否缺失數(shù)據(jù) pd.isna(df1)

?

5. 統(tǒng)計

求平均值? df.mean()

?

6. 使用函數(shù)

>>>df.apply(lambda x: x.max() - x.min())A 2.073961 B 2.671590 C 1.785291 D 0.000000 F 4.000000 dtype: float64

?

轉(zhuǎn)載于:https://www.cnblogs.com/syyy/p/7908075.html

總結(jié)

以上是生活随笔為你收集整理的pandas学习笔记——阅读官方文档的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。