日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

hdu5279 YJC plays Minecraft 【分治NTT】

發布時間:2023/12/10 编程问答 49 豆豆
生活随笔 收集整理的這篇文章主要介紹了 hdu5279 YJC plays Minecraft 【分治NTT】 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

題目鏈接

hdu5279

題解

給出若干個完全圖,然后完全圖之間首尾相連并成環,要求刪邊使得兩點之間路徑數不超過\(1\),求方案數

容易想到各個完全圖是獨立的,每個完全圖要刪成一個森林,其實就是詢問\(n\)個點有標號森林的個數
\(f[i]\)表示\(i\)個點有標號森林的個數
枚舉第一個點所在樹大小,我們只需求出\(n\)個點有多少種樹,由\(purfer\)序容易知道是\(n^{n - 2}\)
那么有
\[f[n] = \sum\limits_{i = 1}^{n} {n - 1 \choose i - 1}i^{i - 2}f[n - i]\]
化簡一下:
\[f[n] = (n - 1)!\sum\limits_{i = 1}^{n}\frac{i^{i - 2}}{(i - 1)!} \times \frac{f[n - i]}{(n - i)!}\]
分治\(NTT\)即可

每個完全圖的方案是\(f[a[i]]\),中間相連的\(n\)條邊有\(2^n\)種方案,由乘法原理乘起來即可

但是這樣求出來的不是答案,會多算一類情況:
每個完全圖的\(1\)\(a_i\)相通且所有中介邊存在
所以我們還需要計算\(g[i]\)表示\(i\)個點的森林,\(1\)\(i\)點在同一棵樹內的方案數
顯然
\[g[n] = \sum\limits_{i = 2}^{n} {n - 2 \choose i - 2}i^{i - 2}f[n - i]\]
化簡得
\[g[n] = (n - 2)!\sum\limits_{i = 2}^{n} \frac{i^{i - 2}}{(i - 2)!} \times \frac{f[n - i]}{(n - i)!}\]
\(NTT\)即可

最后答案減去\(g[a[i]]\)的乘積即可
復雜度\(O(nlog^2n)\)

#include<algorithm> #include<iostream> #include<cstring> #include<cstdio> #include<cmath> #include<map> #define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt) #define REP(i,n) for (int i = 1; i <= (n); i++) #define mp(a,b) make_pair<int,int>(a,b) #define cls(s) memset(s,0,sizeof(s)) #define cp pair<int,int> #define LL long long int using namespace std; const int maxn = 400005,maxm = 100005,INF = 1000000000; inline int read(){int out = 0,flag = 1; char c = getchar();while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}return out * flag; } const int G = 3,P = 998244353; int R[maxn]; inline int qpow(int a,int b){int re = 1;for (; b; b >>= 1,a = 1ll * a * a % P)if (b & 1) re = 1ll * re * a % P;return re; } void NTT(int* a,int n,int f){for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);for (int i = 1; i < n; i <<= 1){int gn = qpow(G,(P - 1) / (i << 1));for (int j = 0; j < n; j += (i << 1)){int g = 1,x,y;for (int k = 0; k < i; k++,g = 1ll * g * gn % P){x = a[j + k],y = 1ll * g * a[j + k + i] % P;a[j + k] = (x + y) % P,a[j + k + i] = ((x - y) % P + P) % P;}}}if (f == 1) return;int nv = qpow(n,P - 2); reverse(a + 1,a + n);for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P; }int f[maxn],g[maxn],fac[maxn],fv[maxn],p[maxn],N = 100005; int A[maxn],B[maxn]; void solve(int l,int r){if (l == r){if (l > 0) f[l] = 1ll * f[l] * fac[l - 1] % P;return;}int mid = l + r >> 1;solve(l,mid);int n,m,L;m = mid - l + 1;for (int i = 0; i < m; i++) A[i] = 1ll * f[l + i] * fv[l + i] % P;m = r - l;for (int i = 0; i < m; i++) B[i] = 1ll * p[i + 1] * fv[i] % P;n = 1; L = 0; m = mid + r - (l << 1) - 1;while (n <= m) n <<= 1,L++;for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));for (int i = mid - l + 1; i < n; i++) A[i] = 0;for (int i = r - l; i < n; i++) B[i] = 0;NTT(A,n,1); NTT(B,n,1);for (int i = 0; i < n; i++) A[i] = 1ll * A[i] * B[i] % P;NTT(A,n,-1);for (int i = mid - l,j = mid + 1; j <= r; i++,j++){f[j] = (f[j] + A[i]) % P;}solve(mid + 1,r); } int b[maxn]; inline int C(int n,int m){if (m > n) return 0;return 1ll * fac[n] * fv[m] % P * fv[n - m] % P; } void work(){fac[0] = p[0] = p[1] = 1;for (int i = 1; i <= N + 2; i++)fac[i] = 1ll * fac[i - 1] * i % P;for (int i = 2; i <= N + 2; i++)p[i] = qpow(i,i - 2);fv[N + 2] = qpow(fac[N + 2],P - 2); fv[0] = 1;for (int i = N + 1; i; i--)fv[i] = 1ll * fv[i + 1] * (i + 1) % P;f[0] = 1;solve(0,N);A[0] = A[1] = 0;for (int i = 2; i <= N; i++) A[i] = 1ll * p[i] * fv[i - 2] % P;for (int i = 0; i <= N; i++) B[i] = 1ll * f[i] * fv[i] % P;int n = 1,L = 0;while (n <= (N << 1)) n <<= 1,L++;for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));for (int i = N + 1; i < n; i++) A[i] = 0;for (int i = N + 1; i < n; i++) B[i] = 0;NTT(A,n,1); NTT(B,n,1);for (int i = 0; i < n; i++) A[i] = 1ll * A[i] * B[i] % P;NTT(A,n,-1);for (int i = 2; i <= N; i++) g[i] = 1ll * A[i] * fac[i - 2] % P;g[1] = 1; } int n,a[maxn],ans,ans2; int main(){work();//REP(i,100) printf("%d ",f[i]); puts("");//REP(i,100) printf("%d ",g[i]); puts("");int T = read();while (T--){n = read();REP(i,n) a[i] = read();ans = qpow(2,n);REP(i,n) ans = 1ll * ans * f[a[i]] % P;ans2 = 1;REP(i,n) ans2 = 1ll * ans2 * g[a[i]] % P;ans = ((ans - ans2) % P + P) % P;printf("%d\n",ans);}return 0; }

轉載于:https://www.cnblogs.com/Mychael/p/9172482.html

總結

以上是生活随笔為你收集整理的hdu5279 YJC plays Minecraft 【分治NTT】的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 日韩一区免费观看 | 91黄色小网站 | 国产又黄又猛又粗又爽 | 欧美福利视频在线 | 97狠狠干| 日本不卡视频在线观看 | 欧美三级午夜理伦三级中视频 | 国产盗摄一区二区三区在线 | 欧美 日韩 国产 在线观看 | 凹凸精品熟女在线观看 | 国产白浆一区二区 | 国产91免费视频 | 一区二区三区在线不卡 | 中文字幕永久在线播放 | 99riav国产精品视频 | av在线视屏 | 亚洲女优在线观看 | 欧美黄色短视频 | 最好看的中文字幕 | 亚洲第一成年网 | 粉嫩久久99精品久久久久久夜 | 国产成人无码精品久久久久久 | 青青自拍视频 | 成人免费黄色片 | 少妇粉嫩小泬白浆流出 | 亚洲国产欧美在线人成 | 国产亚洲精久久久久久无码苍井空 | 亚洲视频在线观看网站 | 亚洲欧美日韩成人在线 | 国产无遮挡免费视频 | 日韩簧片在线观看 | 性xxxxxxxxx18欧美 | 最近2019中文字幕大全第二页 | 在线观看污网站 | 久久久久久久综合 | 无套内谢的新婚少妇国语播放 | 亚洲播放器 | 韩国精品视频在线观看 | 中出一区 | 狠狠干成人 | 国产黄大片在线观看画质优化 | av卡一卡二 | 午夜嘿嘿 | 芒果视频在线观看免费 | 欧美性生活一区二区 | 欧美69久成人做爰视频 | 中文字幕亚洲欧美日韩在线不卡 | 亚洲精品国产精品国自产 | 免费看黄在线 | 日本高清网色 | 午夜av网站| 最新视频 - 88av | 99久| 小嫩嫩精品导航 | 欧美色射 | 国产午夜精品福利视频 | 懂色av一区二区三区在线播放 | 国产亚洲一区二区在线 | 久久视频国产 | 午夜www| 日韩a级黄色片 | 字幕网av | 日韩一级成人 | 黑鬼巨鞭白妞冒白浆 | 日韩成人av一区 | 夜夜操综合| 精品国产一区二区三区四区阿崩 | 1000部啪啪未满十八勿入超污 | 撸撸在线视频 | 国产成人在线电影 | 亚洲高清在线免费观看 | 久草视频在线看 | 爱爱色图| 成人国产三级 | 韩国黄色精品 | 成人一级网站 | 久久久久久一级片 | 成人一级生活片 | 少妇精品视频 | 久久久国产网站 | 好吊视频一区二区三区四区 | 久草免费在线观看视频 | www色中色| 在线亚洲不卡 | 18深夜在线观看免费视频 | 久久综合色视频 | 男人的天堂2019 | 狠狠狠 | 下面一进一出好爽视频 | 欧美丰满熟妇xxxx | 高潮毛片无遮挡高清免费 | 被两个男人吃奶三p爽文 | 男女男网站 | 久久久久久国产精品视频 | 爱爱视频一区二区 | 女性生殖扒开酷刑vk | 精品久久二区 | 伦理片一区二区三区 | 国产一区二区高清 |