日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

(最通俗易懂的)目标跟踪MOSSE、KCF

發布時間:2023/12/10 编程问答 35 豆豆
生活随笔 收集整理的這篇文章主要介紹了 (最通俗易懂的)目标跟踪MOSSE、KCF 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

引言

我們在研究目標跟蹤前先要了解它分為哪幾類,以及大體思路是什么?
分類:①目標建模;②前景背景識別。
思路:①目標建模的思路是首先我們用一些手段把我們想要跟蹤的目標“框出來”。例如:我們要跟蹤視頻中的一個人,我們可以在電腦端用鼠標畫框把視頻第一幀的人框出來(這個看算法怎么設置的),然后算法就會根據我們框出的目標建立一個模型。在之后的視頻幀,算法會根據我們之前建立的人的模型,找視頻幀中與其最相似的圖像塊,然后輸出這個圖像塊的位置,每個幀的位置信息都有了,組成視頻后,我們就會發現那個框框在跟著人在運動,這樣我們便實現了跟蹤。
②前景背景識別主要技術路線是通過一定的技術將前景(需要跟蹤的目標)和背景(我們不關心的場景信息)分開。例如:一個視頻中只有一個運動的人,其他都不動,我們可以直接檢測圖像灰度值的變化,發生變化的地方就是我們需要跟蹤的人的邊緣。

跟蹤中常出現的問題:1.遮擋:目標被其他物體遮擋,模板匹配不到物體,(你可能會說,過一會物體出來了再跟上不就好了。不是這樣的,模板會根據當前幀目標在不斷更新,如果跟不上,它停在了遮擋物處,那么過幾幀以后,這個模板就成了遮擋物的模板了,跟著遮擋物走了)。2.目標旋轉:例如之前跟著人臉,結果他一轉身,就成了跟著后腦勺了,完全跟不上。3.光照變化:二郎研究過這一塊的,圖像去陰影去雨去雪,但是話又說回來了,圖像增強后,人眼看著舒服了,但是機器可能不認。4.運動模糊:有重影了,到底哪個是目標,人都沒法確認,何況算法。

上面非常直接地告訴了大家思路,那么之后的所有算法都是在這兩個思路實現的過程中產生的。

預備知識:
1.相關濾波
從字面意思理解為:用濾波的方法獲得兩個對象的相關性(圖像中的區域與所需目標的相關性)。濾波就相當于篩子,把符合的目標找出來(例如找凸顯邊緣的canny濾波)。
濾波器和圖像做卷積,卷積后我們的圖像變成了響應圖像,和原圖像尺寸一致,這個響應圖像的黃色部分代表最大響應值,目前來看我們這個濾波器是鼻子的模板,跟蹤鼻子。

第一章 目標跟蹤MOSSE

1.Bolme 等人在 2010 年提出了基于相關濾波器的輸出誤差最小平方和跟蹤算法(Minimum Output Sum of Squared Error,MOSSE)。該算法屬于目標建模算法。基于MOSSE濾波器的跟蹤方法對照明、縮放、姿態和非剛性變形不敏感,其運行速度為669幀/秒。
為了有效解決訓練過程中的樣本貧化問題,Henquriques 等人在 MOSSE 跟蹤算法的基礎上,提出循環結構跟蹤算法(CSK)和核相關濾波跟蹤算法(KCF)。

2.基本的跟蹤算法流程
①確定跟蹤目標,建立響應圖g1
是的,初始的響應圖不是濾波出來的,而是自己創建的。
等同于你在用鼠標畫框,程序自動建立了一個響應圖,把響應值最大的位置定在畫框的中心。響應圖直接是中心為1,其他位置都為0?不是這樣的,這樣是無法反映以中心向四周的響應逐漸遞減的過程。可以用高斯函數,做一個山丘,山頂(畫框中心)響應最大,然后向四周響應越來越小。
②利用G1和圖像F1,反推濾波器H1
H1=G1/F1
③得到H1以后,就可以通過圖像第二幀f2和濾波器h1的卷積獲得響應函數G2;
f2(卷積)h1=G2
④用G2更新濾波器,得到濾波器H2

這是基礎的步驟,下面來看下MOSSE在其中加了哪幾步。

3.添加步驟
①單純來看,只利用第一幀出畫框得來的初始濾波器h1只能滿足一個比較獨立的任務,換一個人,或者也就變變發型,它可能就跟不上了(過擬合),我們需要建立一個類似于ASEF的濾波器的初始濾波器H*,避免過擬合問題。
ASEF ,是Average of Synthetic Exact Filters 的簡稱,可譯為合成平均濾波器。
下圖是為了跟蹤人眼而創建的濾波器,可以看出,主要思想是平均。
圖片來源:
https://blog.csdn.net/kaka_36/article/details/18353155

因此在第一步確定跟蹤目標時,不是簡單地在第一幀畫框,而是給出多個訓練集(例如跟蹤人,給出多個人的圖片fi,都是標注好的,帶有響應函數gi)
因此我們可以得到多個圖的濾波器hi

然后我們在多個濾波器中找到適合大部分圖像的那個濾波器,利用最小化法

這里最小化是逐個選H*,帶入到公式(然求得的響應函數與原初始的響應函數差最小),獲得最佳H*。
如何求這個最小法呢?對整個公式求導,

然后變化,可得

這里的求導不理解沒關系,和算法的整體沒有太大聯系,只是求最小化問題的一種方法。
之后作者原文還寫了一些其他求最小化問題的方法,例如像ASEF一樣做平均


在更新濾波器的時候,為了得到更魯棒的濾波器,參考ASEF平均值法,設計了新的方法。
這里有一點需要說明,下面的i可和上面的i不是一個概念。上面的i是訓練集的多個圖像,而下面的是當前幀,i-1表示上一個幀。初始的第一個幀是上面方法獲得的。
ASEF平均值法迭代

MOSSE的方法

其中η是學習率,原文取值0.125。可以看出我們接收當前幀變化的0.125的信息,接收上一幀0.975的信息,表明這個過程還是以初始幀為主,不允許出現較大的變化,只是微調(也可能是這里的0.125在微調中算是學習率比較大的了)。
這里有個在線學習的概念,意思是邊跟蹤,邊更新我們的濾波器。一邊應用一邊更新。

未完待續……(KFC)

總結

以上是生活随笔為你收集整理的(最通俗易懂的)目标跟踪MOSSE、KCF的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。