日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

[密码学][困难问题][常见规约]密码学问题常见困难问题

發布時間:2023/12/10 编程问答 33 豆豆
生活随笔 收集整理的這篇文章主要介紹了 [密码学][困难问题][常见规约]密码学问题常见困难问题 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

參考網址(科學上網)
密碼學問題常見困難問題,需要點擊參考網址進行查找
其困難問題的介紹非常友好,請根據目錄快速找到相關資料

以下是檢索 目錄

Discrete logarithm problem

DLP: discrete logarithm problem
CDH: computational Diffie-Hellman problem
SDH: static Diffie-Hellman problem
gap-CDH: Gap Diffie-Hellman problem
DDH: decision Diffie-Hellman problem
Strong-DDH: strong decision Diffie-Hellman problem
sDDH: skewed decision Diffie-Hellman problem
PDDH: parallel decision Diffie-Hellman problem
Square-DH: Square Diffie-Hellman problem
l-DHI: l-Diffie-Hellman inversion problem
l-DDHI: l-Decisional Diffie-Hellman inversion problem
REPRESENTATION: Representation problem
LRSW: LRSW Problem
Linear: Linear problem
D-Linear1: Decision Linear problem (version 1)
l-SDH: l-Strong Diffie-Hellman problem
c-DLSE: Discrete Logarithm with Short Exponents
CONF: (conference-key sharing scheme)
3PASS: 3-Pass Message Transmission Scheme
LUCAS: Lucas Problem
XLP: x-Logarithm Problem
MDHP: Matching Diffie-Hellman Problem
DDLP: Double Discrete Logarithm Problem
rootDLP: Root of Discrete Logarithm Problem
n-M-DDH: Multiple Decision Diffie-Hellman Problem
l-HENSEL-DLP: l-Hensel Discrete Logarithm Problem
DLP(Inn(G)): Discrete Logarithm Problem over Inner Automorphism Group
IE: Inverse Exponent
TDH: The Twin Diffie-Hellman Assumption
XTR-DL: XTR discrete logarithm problem
XTR-DH: XTR Diffie-Hellman problem
XTR-DHD: XTR decision Diffie-Hellman problem
CL-DLP: discrete logarithms in class groups of imaginary quadratic orders
TV-DDH: Tzeng Variant Decision Diffie-Hellman problem
n-DHE: n-Diffie-Hellman Exponent problem

Factoring

FACTORING: integer factorisation problem
SQRT: square roots modulo a composite
CHARACTERd: character problem
MOVAd: character problem
CYCLOFACTd: factorisation in Z[θ]
FERMATd: factorisation in Z[θ]
RSAP: RSA problem
Strong-RSAP: strong RSA problem
Difference-RSAP: Difference RSA problem
Partial-DL-ZN2P: Partial Discrete Logarithm problem in Z?n
DDH-ZN2P: Decision Diffie-Hellman problem over Z?n
Lift-DH-ZN2P: Lift Diffie-Hellman problem over Z?n
EPHP: Election Privacy Homomorphism problem
AERP: Approximate e-th root problem
l-HENSEL-RSAP: l-Hensel RSA
DSeRP: Decisional Small e-Residues in Z?n2
DS2eRP: Decisional Small 2e-Residues in Z?n2
DSmallRSAKP: Decisional Reciprocal RSA-Paillier in Z?n2
HRP: Higher Residuosity Problem
ECSQRT: Square roots in elliptic curve groups over Z/nZ
RFP: Root Finding Problem
phiA: PHI-Assumption
C-DRSA: Computational Dependent-RSA problem
D-DRSA: Decisional Dependent-RSA problem
E-DRSA: Extraction Dependent-RSA problem
DCR: Decisional Composite Residuosity problem
CRC: Composite Residuosity Class problem
DCRC: Decisional Composite Residuosity Class problem
GenBBS: generalised Blum-Blum-Shub assumption

Product groups

co-CDH: co-Computational Diffie-Hellman Problem
PG-CDH: Computational Diffie-Hellman Problem for Product Groups
XDDH: External Decision Diffie-Hellman Problem
D-Linear2: Decision Linear Problem (version 2)
PG-DLIN: Decision Linear Problem for Product Groups
FSDH: Flexible Square Diffie-Hellman Problem
KSW1: Assumption 1 of Katz-Sahai-Waters

Pairings

BDHP: Bilinear Diffie-Hellman Problem
DBDH: Decision Bilinear Diffie-Hellman Problem
B-DLIN: Bilinear Decision-Linear Problem
l-BDHI: l-Bilinear Diffie-Hellman Inversion Problem
l-DBDHI: l-Bilinear Decision Diffie-Hellman Inversion Problem
l-wBDHI: l-weak Bilinear Diffie-Hellman Inversion Problem
l-wDBDHI: l-weak Decisional Bilinear Diffie-Hellman Inversion Problem
KSW2: Assumption 2 of Katz-Sahai-Waters
MSEDH: Multi-sequence of Exponents Diffie-Hellman Assumption

Lattices

Main Lattice Problems

SVPγp: (Approximate) Shortest vector problem
CVPpγ: (Approximate) Closest vector problem
GapSVPpγ: Decisional shortest vector problem
GapCVPpγ: Decisional closest vector problem

Modular Lattice Problems

SISp(n,m,q,β): Short integer solution problem
ISISp(n,m,q,β): Inhomogeneous short integer solution problem
LWE(n,q,φ): Learning with errors problem

Miscellaneous Lattice Problems

USVPp(n,γ): Approximate unique shortest vector problem
SBPp(n,γ): Approximate shortest basis problem
SLPp(n,γ): Approximate shortest length problem
SIVPp(n,γ): Approximate shortest independent vector problem
hermiteSVP: Hermite shortest vector problem
CRP: Covering radius problem

Ideal Lattice Problems

Ideal-SVPf,pγ: (Approximate) Ideal shortest vector problem / Shortest polynomial problem
Ideal-SISf,p q,m,β: Ideal small integer solution problem

Miscellaneous Problems

KEA1: Knowledge of Exponent assumption
MQ: Multivariable Quadratic equations
CF: Given-weight codeword finding
ConjSP: Braid group conjugacy search problem
GenConjSP: Generalised braid group conjugacy search problem
ConjDecomP: Braid group conjugacy decomposition problem
ConjDP: Braid group conjugacy decision problem
DHCP: Braid group decisional Diffie-Hellman-type conjugacy problem
ConjSearch: (multiple simlutaneous) Braid group conjugacy search problem
SubConjSearch: subgroup restricted Braid group conjugacy search problem
LINPOLY : A linear algebra problem on polynomials
HFE-DP: Hidden Field Equations Decomposition Problem
HFE-SP: Hidden Field Equations Solving Problem
MKS: Multiplicative Knapsack
BP: Balance Problem
AHA: Adaptive Hardness Assumptions
SPI: Sparse Polynomial Interpolation
SPP: Self-Power Problem
VDP: Vector Decomposition Problem
2-DL: 2-generalized Discrete Logarithm Problem

Problem Details

The full paper provides details about each assumption. Here is an example entry:

CDH: computational Diffie-Hellman problem

Definition :

Given ga,gb∈G to compute gab.

Reductions:

  • CDH ≤p DLP
  • DLP ≤subexp CDH in groups of squarefree order.

Algorithms:

The best known algorithm for CDH is to actually solve the DLP.

Use in cryptography: Diffie-Hellman key exchange and variants, Elgamal encryption and variants, BLS signatures and variants.

History:

Discovered by W. Diffie and M. Hellman.

Remark:

A variant of CDH is: Given g0,ga0,gb0∈G to compute gab0. This is ≡p CDH.

References:

  • W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Transactions on Information Theory, vol. IT-22, No. 6, Nov. 1976, p. 644-654.

  • U.M. Maurer and S. Wolf, Diffie-Hellman Oracles, Proceedings of CRYPTO ’96, p. 268-282.

  • D. Boneh and R.J. Lipton Algorithms for Black-Box Fields and Applications to Cryp- tography, Proceedings of CRYPTO ’96, p. 283-297.

The complete text is far too long to copy paste here, but this provides a pretty good example of how extensive and thorough it is.

Addendum: Unlisted Problem(s)

The following problem(s) were not listed in the above reference:

  • MIHNP: Modular Inversion Hidden Number Problem
  • AGCD: Approximate Greatest Common Divisor
  • SIP: Small Inverse Problem

Subset Sum/Knapsack problem

  • Subset Sum problem
    • (0,1) knapsack problem (The standard version of the problem)
  • Bounded knapsack problem
  • Unbounded knapsack problem
  • RMSS: Random Modular Subset Sum

Note about parameters

Hardness assumptions only hold when parameterized correctly. Inappropriate parameters can lead to easily solved instances of hard problems.

總結

以上是生活随笔為你收集整理的[密码学][困难问题][常见规约]密码学问题常见困难问题的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。