日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 综合教程 >内容正文

综合教程

抽屉原理(鸽巢原理)

發(fā)布時(shí)間:2023/12/13 综合教程 33 生活家
生活随笔 收集整理的這篇文章主要介紹了 抽屉原理(鸽巢原理) 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

轉(zhuǎn)至:https://blog.csdn.net/sand8o8time/article/details/77009749

一、抽屜原理初介紹:

桌上有十個(gè)蘋果,要把這十個(gè)蘋果放到九個(gè)抽屜里,無論怎樣放,我們會(huì)發(fā)現(xiàn)至少會(huì)有一個(gè)抽屜里面至少放兩個(gè)蘋果。這一現(xiàn)象就是我們所說的“抽屜原理”。 抽屜原理的一般含義為:“如果每個(gè)抽屜代表一個(gè)集合,每一個(gè)蘋果就可以代表一個(gè)元素,假如有n+1個(gè)元素放到n個(gè)集合中去,其中必定有一個(gè)集合里至少有兩個(gè)元素。” 抽屜原理有時(shí)也被稱為鴿巢原理。它是組合數(shù)學(xué)中一個(gè)重要的原理。

二、抽屜原理詳講:

第一抽屜原理:

原理1:
把多于n+1個(gè)的物體放到n個(gè)抽屜里,則至少有一個(gè)抽屜里的東西不少于兩件。
證明(反證法):如果每個(gè)抽屜至多只能放進(jìn)一個(gè)物體,那么物體的總數(shù)至多是n×1,而不是題設(shè)的n+k(k≥1),故不可能。

原理2 :
把多于mn(m乘n)+1(n不為0)個(gè)的物體放到n個(gè)抽屜里,則至少有一個(gè)抽屜里有不少于(m+1)的物體。
證明(反證法):若每個(gè)抽屜至多放進(jìn)m個(gè)物體,那么n個(gè)抽屜至多放進(jìn)mn個(gè)物體,與題設(shè)不符,故不可能。

原理3 :
把無窮多件物體放入n個(gè)抽屜,則至少有一個(gè)抽屜里 有無窮個(gè)物體。

原理1 、2 、3都是第一抽屜原理的表述。

第二抽屜原理:

把(mn-1)個(gè)物體放入n個(gè)抽屜中,其中必有一個(gè)抽屜中至多有(m—1)個(gè)物體(例如,將3×5-1=14個(gè)物體放入5個(gè)抽屜中,則必定有一個(gè)抽屜中的物體數(shù)少于等于3-1=2)。

三、構(gòu)造抽屜的方法:

運(yùn)用抽屜原理的核心是分析清楚問題中,哪個(gè)是物件,哪個(gè)是抽屜。例如,屬相是有12個(gè),那么任意37個(gè)人中,至少有幾個(gè)人屬相相同呢?這時(shí)將屬相看成12個(gè)抽屜,則一個(gè)抽屜中有 37/12,即3余1,余數(shù)不考慮,而向上考慮取整數(shù),所以這里是3+1=4個(gè)人,但這里需要注意的是,前面的余數(shù)1和這里加上的1是不一樣的。因此,在問題中,較多的一方就是物件,較少的一方就是抽屜,比如上述問題中的屬相12個(gè),就是對(duì)應(yīng)抽屜,37個(gè)人就是對(duì)應(yīng)物件,因?yàn)?7相對(duì)12多。

四、抽屜原理的簡單應(yīng)用:

抽屜原理的內(nèi)容簡明樸素,易于接受,它在數(shù)學(xué)問題中有重要的作用。許多有關(guān)存在性的證明都可用它來解決。
1. 說明400人中至少有2個(gè)人的生日相同
  解:將一年中的366天視為366個(gè)抽屜,400個(gè)人看作400個(gè)物體,由抽屜原理1可以得知:至少有2人的生日相同. 400/366=1…34,1+1=2 又如:我們從街上隨便找來13人,就可斷定他們中至少有兩個(gè)人屬相相同
  
2. 幼兒園買來了不少白兔、熊貓、長頸鹿塑料玩具,每個(gè)小朋友任意選擇兩件,那么不管怎樣挑選,在任意七個(gè)小朋友中總有兩個(gè)彼此選的玩具都相同,試說明道理
  解 :從三種玩具中挑選兩件,搭配方式只能是下面六種:(兔、兔),(兔、熊貓),(兔、長頸鹿),(熊貓、熊貓),(熊貓、長頸鹿),(長頸鹿、長頸鹿)。把每種搭配方式看作一個(gè)抽屜,把7個(gè)小朋友看作物體,那么根據(jù)原理1,至少有兩個(gè)物體要放進(jìn)同一個(gè)抽屜里,也就是說,至少兩人挑選玩具采用同一搭配方式,選的玩具相同.

是不是感覺這兩個(gè)問題很LOW,其實(shí)我覺得也是,并沒有體現(xiàn)抽屜原理的靈魂之美,下面我們就增加一點(diǎn)點(diǎn)難度

制造抽屜是運(yùn)用原則的一大關(guān)鍵
3. 從2、4、6、…、30這15個(gè)偶數(shù)中,任取9個(gè)數(shù),證明其中一定有兩個(gè)數(shù)之和是34。
分析與解答 :
我們用題目中的15個(gè)偶數(shù)制造8個(gè)抽屜:
  此抽屜特點(diǎn):凡是抽屜中有兩個(gè)數(shù)的,都具有一個(gè)共同的特點(diǎn):這兩個(gè)數(shù)的和是34(這個(gè)地方各位大佬要看清楚了,是你制造抽屜,也就是說按照你的規(guī)定制造抽屜,很明顯這道題我制造成{2},{4,30},{6,28},{8,26},{10,24},{12,22},{14,20},{16,18}這8個(gè)抽屜)。
  現(xiàn)從題目中的15個(gè)偶數(shù)中任取9個(gè)數(shù),由抽屜原理(因?yàn)槌閷现挥?個(gè)),必有兩個(gè)數(shù)可以在同一個(gè)抽屜中(符合上述特點(diǎn)).由制造的抽屜的特點(diǎn),這兩個(gè)數(shù)的和是34。
  
4. 從1、2、3、4、…、19、20這20個(gè)自然數(shù)中,至少任選幾個(gè)數(shù),就可以保證其中一定包括兩個(gè)數(shù),它們的差是12。
分析與解答:在這20個(gè)自然數(shù)中,差是12的有以下8對(duì):{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}。
  另外還有4個(gè)不能配對(duì)的數(shù){9},{10},{11},{12},共制成12個(gè)抽屜(每個(gè)括號(hào)看成一個(gè)抽屜).只要有兩個(gè)數(shù)取自同一個(gè)抽屜,那么它們的差就等于12,根據(jù)抽屜原理至少任選13個(gè)數(shù),即可辦到(????ω????)。

5. 從1到20這20個(gè)數(shù)中,任取11個(gè)數(shù),必有兩個(gè)數(shù),其中一個(gè)數(shù)是另一個(gè)數(shù)的倍數(shù)。
分析與解答: 根據(jù)題目所要求證的問題,應(yīng)考慮按照同一抽屜中,任意兩數(shù)都具有倍數(shù)關(guān)系的原則制造抽屜.把這20個(gè)數(shù)按奇數(shù)及其倍數(shù)分成以下十組,看成10個(gè)抽屜(顯然,它們具有上述性質(zhì)):
{1,2,4,8,16},{3,6,12},{5,10,20},{7,14},{9,18},{11},{13},{15},{17},{19},仔細(xì)研究一下,如果存在元素個(gè)數(shù)大于2的集合,是不是從這些集合中任意取出來兩個(gè)都能滿足一個(gè)數(shù)是另外一個(gè)數(shù)的倍數(shù)?(是的吧),這樣設(shè)置抽屜的方法是不是很容易想到呢(????ω????)
  從這10個(gè)數(shù)組的20個(gè)數(shù)中任取11個(gè)數(shù),根據(jù)抽屜原理,至少有兩個(gè)數(shù)取自同一個(gè)抽屜.由于凡在同一抽屜中的兩個(gè)數(shù)都具有倍數(shù)關(guān)系,所以這兩個(gè)數(shù)中,其中一個(gè)數(shù)一定是另一個(gè)數(shù)的倍數(shù)。

我們可以再難一點(diǎn):
6. 某校校慶,來了n位校友,彼此認(rèn)識(shí)的握手問候.請(qǐng)你證明無論什么情況,在這n個(gè)校友中至少有兩人握手的次數(shù)一樣多。
分析與解答:共有n位校友,每個(gè)人握手的次數(shù)最少是0次,即這個(gè)人與其他校友都沒有握過手;最多有n-1次,即這個(gè)人與每位到會(huì)校友都握了手.然而,如果有一個(gè)校友握手的次數(shù)是0次,那么握手次數(shù)最多的不能多于n-2次;如果有一個(gè)校友握手的次數(shù)是n-1次,那么握手次數(shù)最少的不能少于1次.不管是前一種狀態(tài)0、1、2、…、n-2,還是后一種狀態(tài)1、2、3、…、n-1,握手次數(shù)都只有n-1種情況.把這n-1種情況看成n-1個(gè)抽屜,到會(huì)的n個(gè)校友每人按照其握手的次數(shù)歸入相應(yīng)的“抽屜”,根據(jù)抽屜原理,至少有兩個(gè)人屬于同一抽屜,則這兩個(gè)人握手的次數(shù)一樣多。是不是很神奇呢?(?? . ??)

在有些問題中,“抽屜”和“物體”不是很明顯的,需要精心制造“抽屜”和“物體”.如何制造“抽屜”和“物體”可能是很困難的,一方面需要認(rèn)真地分析題目中的條件和問題,另一方面需要多做一些題積累經(jīng)驗(yàn)。

五、抽屜原理在整除關(guān)系中的應(yīng)用(例題一定要仔細(xì)看看哦):

把所有整數(shù)按照除以某個(gè)自然數(shù)m的余數(shù)分為m類,叫做m的剩余類或同余類,用[0],[1],[2],…,[m-1]表示.每一個(gè)類含有無窮多個(gè)數(shù),例如[1]中含有1,m+1,2m+1,3m+1,….在研究與整除有關(guān)的問題時(shí),常用剩余類作為抽屜.根據(jù)抽屜原理,可以證明:任意n+1個(gè)自然數(shù)中,總有兩個(gè)自然數(shù)的差是n的倍數(shù)。(證明:n+1個(gè)自然數(shù)被n整除余數(shù)至少有兩個(gè)相等(抽屜原理),不妨記為m=a1*n+b n=a2*n+b,則m-n整除n)。
1. 證明:任取8個(gè)自然數(shù),必有兩個(gè)數(shù)的差是7的倍數(shù)。
分析與解答 :在與整除有關(guān)的問題中有這樣的性質(zhì),如果兩個(gè)整數(shù)a、b,它們除以自然數(shù)m的余數(shù)相同,那么它們的差a-b是m的倍數(shù).根據(jù)這個(gè)性質(zhì),本題只需證明這8個(gè)自然數(shù)中有2個(gè)自然數(shù),它們除以7的余數(shù)相同.我們可以把所有自然數(shù)按被7除所得的7種不同的余數(shù)0、1、2、3、4、5、6分成七類.也就是7個(gè)抽屜.任取8個(gè)自然數(shù),根據(jù)抽屜原理,必有兩個(gè)數(shù)在同一個(gè)抽屜中,也就是它們除以7的余數(shù)相同,因此這兩個(gè)數(shù)的差一定是7的倍數(shù)。

2. 對(duì)于任意的五個(gè)自然數(shù),證明其中必有3個(gè)數(shù)的和能被3整除.
證明:任何數(shù)除以3所得余數(shù)只能是0,1,2,不妨分別構(gòu)造為3個(gè)抽屜:
[0],[1],[2]
  ①若這五個(gè)自然數(shù)除以3后所得余數(shù)分別分布在這3個(gè)抽屜中(即抽屜中分別為含有余數(shù)為0,1,2的數(shù)),我們從這三個(gè)抽屜中各取1個(gè)(如1~5中取3,4,5),其和(3+4+5=12)必能被3整除.
  ②若這5個(gè)余數(shù)分布在其中的兩個(gè)抽屜中,則其中必有一個(gè)抽屜至少包含有3個(gè)余數(shù)(抽屜原理),即一個(gè)抽屜包含1個(gè)余數(shù),另一個(gè)包含4個(gè),或者一個(gè)包含2個(gè)余數(shù)另一個(gè)抽屜包含3個(gè)。從余數(shù)多的那個(gè)抽屜里選出三個(gè)余數(shù),其代數(shù)和或?yàn)?,或?yàn)?,或?yàn)?,均為3的倍數(shù),故所對(duì)應(yīng)的3個(gè)自然數(shù)之和是3的倍數(shù).
  ③若這5個(gè)余數(shù)分布在其中的一個(gè)抽屜中,很顯然,從此抽屜中任意取出三個(gè)余數(shù),同情況②,余數(shù)之和可被3整除,故其對(duì)應(yīng)的3個(gè)自然數(shù)之和能被3整除.
  
3. 對(duì)于任意的11個(gè)整數(shù),證明其中一定有6個(gè)數(shù),它們的和能被6整除.
證明:設(shè)這11個(gè)整數(shù)為:a1,a2,a3……a11 又6=2×3
  ①先考慮被3整除的情形
  由例2知,在11個(gè)任意整數(shù)中,必存在:
  3|a1+a2+a3,不妨設(shè)a1+a2+a3=b1;
  同理,剩下的8個(gè)任意整數(shù)中,由例2,必存在:3 | a4+a5+a6.設(shè)a4+a5+a6=b2;
  同理,其余的5個(gè)任意整數(shù)中,有:3|a7+a8+a9,設(shè):a7+a8+a9=b3
  ②再考慮b1、b2、b3被2整除.
  依據(jù)抽屜原理,b1、b2、b3這三個(gè)整數(shù)中,至少有兩個(gè)是同奇或同偶,這兩個(gè)同奇(或同偶)的整數(shù)之和必為偶數(shù).不妨設(shè)2|b1+b2
  則:6|b1+b2,即:6|a1+a2+a3+a4+a5+a6
  ∴任意11個(gè)整數(shù),其中必有6個(gè)數(shù)的和是6的倍數(shù).

4. 任意給定7個(gè)不同的自然數(shù),求證其中必有兩個(gè)整數(shù),其和或差是10的倍數(shù).
分析:注意到這些數(shù)除以10的余數(shù)即個(gè)位數(shù)字,以0,1,…,9為標(biāo)準(zhǔn)制造10個(gè)抽屜,標(biāo)以[0],[1],…,[9].若有兩數(shù)落入同一抽屜,其差是10的倍數(shù),只是僅有7個(gè)自然數(shù),似不便運(yùn)用抽屜原則,再作調(diào)整:[6],[7],[8],[9]四個(gè)抽屜分別與[4],[3],[2],[1]合并,則可保證至少有一個(gè)抽屜里有兩個(gè)數(shù),它們的和或差是10的倍數(shù).
其實(shí)抽屜原理的一種更一般的表述為:
  “把多于kn+1個(gè)東西任意分放進(jìn)n個(gè)空抽屜(k是正整數(shù)),那么一定有一個(gè)抽屜中放進(jìn)了至少k+1個(gè)東西。”
  利用上述原理容易證明:“任意7個(gè)整數(shù)中,至少有3個(gè)數(shù)的兩兩之差是3的倍數(shù)。”因?yàn)槿我徽麛?shù)除以3時(shí)余數(shù)只有0、1、2三種可能,所以7個(gè)整數(shù)中至少有3個(gè)數(shù)除以3所得余數(shù)相同,即它們兩兩之差是3的倍數(shù)。

如果問題所討論的對(duì)象有無限多個(gè),抽屜原理還有另一種表述:把無限多個(gè)東西任意分放進(jìn)n個(gè)空抽屜(n是自然數(shù)),那么一定有一個(gè)抽屜中放進(jìn)了無限多個(gè)東西。

抽屜原理的內(nèi)容簡明樸素,易于接受,它在數(shù)學(xué)問題中有重要的作用。許多有關(guān)存在性的證明都可用它來解決。

六、抽屜原理在染色問題中的應(yīng)用:

1. 正方體各面上涂上紅色或藍(lán)色的油漆(每面只涂一種色),證明正方體一定有三個(gè)面顏色相同.
證明:正方形有6個(gè)面 由最多[(m-1)÷n]+1 得出[(6-1)÷2]+1=[2.5]+1=3

2. 有5個(gè)小朋友,每人都從裝有許多黑白圍棋子的布袋中任意摸出3枚棋子.請(qǐng)你證明,這5個(gè)人中至少有兩個(gè)小朋友摸出的棋子的顏色的配組是一樣的。
分析與解答: 首先要確定3枚棋子的顏色可以有多少種不同的情況,可以有:3黑,2黑1白,1黑2白,3白共4種配組情況,看作4個(gè)抽屜.根據(jù)抽屜原理,至少有兩個(gè)小朋友摸出的棋子的顏色在同一個(gè)抽屜里,也就是他們所拿棋子的顏色配組是一樣的。

3. 假設(shè)在一個(gè)平面上有任意六個(gè)點(diǎn),無三點(diǎn)共線,每兩點(diǎn)用紅色或藍(lán)色的線段連起來,都連好后,問你能不能找到一個(gè)由這些線構(gòu)成的三角形,使三角形的三邊同色?
分析與解答:首先可以從這六個(gè)點(diǎn)中任意選擇一點(diǎn),然后把這一點(diǎn)到其他五點(diǎn)間連五條線段,如圖,在這五條線段中,至少有三條線段是同一種顏色,假定是紅色,現(xiàn)在我們?cè)賳为?dú)來研究這三條紅色的線。這三條線段的另一端或許是不同顏色,假設(shè)這三條線段(虛線)中其中一條是紅色的,那么這條紅色的線段和其他兩條紅色的線段便組成了我們所需要的同色三角形,如果這三條線段都是藍(lán)色的,那么這三條線段也組成我們所需要的同色三角形。因而無論怎樣著色,在這六點(diǎn)之間的所有線段中至少能找到一個(gè)同色三角形。

七、其他小問題

例1:( 六人集會(huì)問題 : 證明在任意6個(gè)人的集會(huì)上,或者有3個(gè)人以前彼此相識(shí),或者有三個(gè)人以前彼此不相識(shí)。” )
是組合數(shù)學(xué)中著名的拉姆塞定理的一個(gè)最簡單的特例,這個(gè)簡單問題的證明思想可用來得出另外一些深入的結(jié)論。這些結(jié)論構(gòu)成了組合數(shù)學(xué)中的重要內(nèi)容—–拉姆塞理論。
這個(gè)問題可以用如下方法簡單明了地證出:
  在平面上用6個(gè)點(diǎn)A、B、C、D、E、F分別代表參加集會(huì)的任意6個(gè)人。如果兩人以前彼此認(rèn)識(shí),那么就在代表他們的兩點(diǎn)間連成一條紅線;否則連一條藍(lán)線。考慮A點(diǎn)與其余各點(diǎn)間的5條連線AB,AC,…,AF,它們的顏色不超過2種。根據(jù)抽屜原理可知其中至少有3條連線同色,不妨設(shè)AB,AC,AD同為紅色。如果BC,BD ,CD 3條連線中有一條(不妨設(shè)為BC)也為紅色,那么三角形ABC即一個(gè)紅色三角形,A、B、C代表的3個(gè)人以前彼此相識(shí):如果BC、BD、CD 3條連線全為藍(lán)色,那么三角形BCD即一個(gè)藍(lán)色三角形,B、C、D代表的3個(gè)人以前彼此不相識(shí)。不論哪種情形發(fā)生,都符合問題的結(jié)論。

例2: 17個(gè)科學(xué)家中每個(gè)人與其余16個(gè)人通信,他們通信所討論的僅有三個(gè)問題,而任兩個(gè)科學(xué)家之間通信討論的是同一個(gè)問題。證明:至少有三個(gè)科學(xué)家通信時(shí)討論的是同一個(gè)問題。
解:不妨設(shè)A是某科學(xué)家,他與其余16位討論僅三個(gè)問題,由鴿籠原理知,他至少與其中的6位討論同一問題。設(shè)這6位科學(xué)家為B,C,D,E,F(xiàn),G,討論的是甲問題。
  若這6位中有兩位之間也討論甲問題,則結(jié)論成立。否則他們6位只討論乙、丙兩問題。這樣又由鴿籠原理知B至少與另三位討論同一問題,不妨設(shè)這三位是C,D,E,且討論的是乙問題。
  若C,D,E中有兩人也討論乙問題,則結(jié)論也就成立了。否則,他們間只討論丙問題,這樣結(jié)論也成立。

總結(jié)

以上是生活随笔為你收集整理的抽屉原理(鸽巢原理)的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。