日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

pytorch简单框架

發布時間:2023/12/13 编程问答 27 豆豆
生活随笔 收集整理的這篇文章主要介紹了 pytorch简单框架 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

網絡搭建:

mynn.py:

import torch
from torch import nn
class mynn(nn.Module):
def __init__(self):
super(mynn, self).__init__()
self.layer1 = nn.Sequential(
nn.Linear(3520, 4096), nn.BatchNorm1d(4096), nn.ReLU(True)
)
self.layer2 = nn.Sequential(
nn.Linear(4096, 4096), nn.BatchNorm1d(4096), nn.ReLU(True)
)
self.layer3 = nn.Sequential(
nn.Linear(4096, 4096), nn.BatchNorm1d(4096), nn.ReLU(True)
)
self.layer4 = nn.Sequential(
nn.Linear(4096, 4096), nn.BatchNorm1d(4096), nn.ReLU(True)
)
self.layer5 = nn.Sequential(
nn.Linear(4096, 3072), nn.BatchNorm1d(3072), nn.ReLU(True)
)
self.layer6 = nn.Sequential(
nn.Linear(3072, 2048), nn.BatchNorm1d(2048), nn.ReLU(True)
)
self.layer7 = nn.Sequential(
nn.Linear(2048, 1024), nn.BatchNorm1d(1024), nn.ReLU(True)
)
self.layer8 = nn.Sequential(
nn.Linear(1024, 256), nn.BatchNorm1d(256), nn.ReLU(True)
)
self.layer9 = nn.Sequential(
nn.Linear(256, 64), nn.BatchNorm1d(64), nn.ReLU(True)
)
self.layer10 = nn.Sequential(
nn.Linear(64, 32), nn.BatchNorm1d(32), nn.ReLU(True)
)
self.layer11 = nn.Sequential(
nn.Linear(32, 3)
)

def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.layer5(x)
x = self.layer6(x)
x = self.layer7(x)
x = self.layer8(x)
x = self.layer9(x)
x = self.layer10(x)
x = self.layer11(x)
return x

Dataset重定義:
mydataset.py

import os
from torch.utils import data
import numpy as np
from astropy.io import fits
from torchvision import transforms as T
from PIL import Image
import pandas as pd

class mydataset(data.Dataset):

def __init__(self,csv_file,root_dir=None,transform=None):
self.landmarks_frame=np.loadtxt(open(csv_file,"rb"),delimiter=",") #landmarks_frame是一個numpy矩陣
self.root_dir=root_dir
self.transform=transform
def __len__(self):
return len(self.landmarks_frame)
def __getitem__(self, idx):
lfit=self.landmarks_frame[idx,:]
lable=lfit[len(lfit)-1]
datafit=lfit[0:(len(lfit)-1)]
return lable,datafit
主程序:
main.py import torch
from torch import nn, optim
from torchvision import datasets, transforms
from torch.autograd import Variable
#from models import Mynet, my_AlexNet, my_VGG
from sdata import mydataset
import time
import numpy as np
from model import mynn
if __name__ == '__main__': #如果Dataloader開啟num_workers > 0 必須要在'__main__'下才能消除報錯

data_train = mydataset.mydataset(csv_file="G:\\DATA\\train.csv",root_dir=None,transform=None)
#data_test = mydataset(test=True)
data_test = mydataset.mydataset(csv_file="G:\\DATA\\test.csv", root_dir=None, transform=None)
data_loader_train = torch.utils.data.DataLoader(dataset=data_train,
batch_size=256,
shuffle=True,
num_workers=0,
pin_memory=True)
data_loader_test = torch.utils.data.DataLoader(dataset=data_test,
batch_size=256,
shuffle=True,
num_workers=0,
pin_memory=True)
print("**dataloader done**")
model = mynn.mynn()

if torch.cuda.is_available():
#model = model.cuda()
model.to(torch.device('cuda'))
#損失函數
criterion = nn.CrossEntropyLoss()
#optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
#優化算法
optimizer = optim.Adam(model.parameters(), lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=1e-4)
n_epochs = 1000

global_train_acc = []

s_time = time.time()

for epoch in range(n_epochs):
running_loss = 0.0
running_correct = 0.0
print('Epoch {}/{}'.format(epoch, n_epochs))
for label,datafit in data_loader_train:
x_train, y_train = datafit,label
#x_train, y_train = Variable(x_train.cuda()), Variable(y_train.cuda())
x_train, y_train = x_train.to(torch.device('cuda')), y_train.to(torch.device('cuda'))
x_train=x_train.float()
y_train=y_train.long()
#x_train, y_train = Variable(x_train), Variable(y_train)
outputs = model(x_train)
_, pred = torch.max(outputs.data, 1)
optimizer.zero_grad()
loss = criterion(outputs, y_train)
loss.backward()
optimizer.step()

running_loss += loss.item()
running_correct += torch.sum(pred == y_train.data)

testing_correct = 0.0
for label,datafit in data_loader_test:
x_test, y_test = datafit,label
x_test=x_test.float()
y_test=y_test.long()
x_test, y_test = Variable(x_test.cuda()), Variable(y_test.cuda())
# x_test, y_test = Variable(x_test), Variable(y_test)
outputs = model(x_test)
_, pred = torch.max(outputs.data, 1)
testing_correct += torch.sum(pred == y_test.data)

print('Loss is:{:.4f}, Train Accuracy is:{:.4f}%, Test Accuracy '
'is:{:.4f}'.format(running_loss / len(data_train),
100 * running_correct / len(data_train),
100 * testing_correct / len(data_test)))


e_time = time.time()
print('time_run is :', e_time - s_time)
print('*******done******')

將天文數據寫入csv中:
main.py # -*- coding: utf-8 -*-
"""
Spyder Editor

This is a temporary script file.
"""

import matplotlib.pyplot as plt
from astropy.io import fits
import os
import matplotlib
matplotlib.use('Qt5Agg')
from astropy.io import fits
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.decomposition import PCA
def getData(fitPath,cla):
fileList=[] #所有.fit文件
files=os.listdir(fitPath) #返回一個列表,其中包含在目錄條目的名稱
y=[]
for f in files:
if os.path.isfile(fitPath+'/'+f) and f[-4:-1]==".fi":
fileList.append(fitPath+'/'+f) #添加文件
len=90000
x=np.ones(3521)
num=1
for path in fileList:
f = fits.open(path)
header = f[0].header # fit文件中的各種標識

SPEC_CLN = header['SPEC_CLN']
SN_G = header['SN_G']
NAXIS1 = header['NAXIS1'] # 光譜數據維度
COEFF0 = header['COEFF0']
COEFF1 = header['COEFF1']
wave = np.ones(NAXIS1) # 光譜圖像中的橫坐標
for i in range(NAXIS1):
wave[i] = i
logwavelength = COEFF0 + wave * COEFF1
for i in range(NAXIS1):
wave[i] = 10 ** logwavelength[i]
min=0
for i in range(NAXIS1-1):
if wave[i]<=4000 and wave[i+1]>=4000:
min=i
spec = f[0].data[0, :] # 光譜數據 fit中的第一行數據
spec=spec[min:min+3521]
spec=np.array(spec)
spec[3520]=cla
if num==1:
x=spec
num=2
else:
x=np.row_stack((x,spec))
#np.savetxt(csvPath,x, delimiter=',')
return x

if __name__ == '__main__':
x=getData("G:\DATA\STAR",0)
x_train,x_test=train_test_split(x,test_size=0.1 ,random_state=0)

y=getData("G:\DATA\QSO",1)
y_train, y_test = train_test_split(y, test_size=0.1, random_state=0)
x_train = np.row_stack((x_train,y_train))
x_test=np.row_stack((x_test,y_test))

z=getData("G:\DATA\GALAXY",2)
z_train, z_test = train_test_split(z, test_size=0.1, random_state=0)
x_train=np.row_stack((x_train,z_train))
x_test = np.row_stack((x_test,z_test))
np.savetxt("G:\\DATA\\train.csv",x_train, delimiter=',')
np.savetxt("G:\\DATA\\test.csv", x_test, delimiter=',')


轉載于:https://www.cnblogs.com/invisible2/p/11523330.html

總結

以上是生活随笔為你收集整理的pytorch简单框架的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。