日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Learning from Imbalanced Classes

發布時間:2023/12/13 编程问答 41 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Learning from Imbalanced Classes 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

數據不均衡


數據不平衡是一個非常經典的問題,數據挖掘、計算廣告、NLP等工作經常遇到。該文總結了可能有效的方法,值得參考:

1.Do nothing. Sometimes you get lucky and nothing needs to be done. You can train on the so-called natural (or stratified) distribution and sometimes it works without need for modification.2. Balance the training set in some way:2.1 Oversample the minority class.2.2 Undersample the majority class.2.3 Synthesize new minority classes.3. Throw away minority examples and switch to an anomaly detection framework.4. At the algorithm level, or after it:4.1 Adjust the class weight (misclassification costs).4.2 Adjust the decision threshold.4.3 Modify an existing algorithm to be more sensitive to rare classes.5. Construct an entirely new algorithm to perform well on imbalanced data.

參考文獻

https://svds.com/learning-imbalanced-classes/

Learning from Imbalanced Classes

創作挑戰賽新人創作獎勵來咯,堅持創作打卡瓜分現金大獎

總結

以上是生活随笔為你收集整理的Learning from Imbalanced Classes的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。