李宏毅机器学习课程11~~~为何要深?
為何要“深”?
pluskid的博客 Deep Learning and Shallow Learning
Bengio Y. Learning deep architectures for AI. Foundations and trends? in Machine Learning, 2009
Deeper is Better?
模型有更多的參數會有更好的結果,這是毋庸置疑的。
深瘦的模型會比淺胖的模型有更好的表達能力。
Universality Theorem
雖然理論上單層網絡可以表達任意的函數,但是實際上更深的結構在表達函數的能力更出色。
細節見 A visual proof that neural nets can compute any function
Do Deep Nets Really Need To Be Deep? (by Rich Caruana)
更多細節見 Rich Caruana
“Do Deep Nets Really Need to be Deep?”閱讀筆記
參考文獻
Home: http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17.html
A visual proof that neural nets can compute any function
Rich Caruana
Deep Learning: Theoretical Motivations (Yoshua Bengio)
Connections between physics and deep learning
Why Deep Learning Works: Perspectives from Theoretical
Chemistry
總結
以上是生活随笔為你收集整理的李宏毅机器学习课程11~~~为何要深?的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 坦克世界闪击战S系重型坦克ST-1怎么样
- 下一篇: 全军出击医疗药品使用技巧 何时打药效果最