Tensorflow2.0笔记27——acc/loss 可视化,查看效果
生活随笔
收集整理的這篇文章主要介紹了
Tensorflow2.0笔记27——acc/loss 可视化,查看效果
小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.
Tensorflow2.0筆記
本博客為Tensorflow2.0學(xué)習(xí)筆記,感謝北京大學(xué)微電子學(xué)院曹建老師
目錄Tensorflow2.0筆記2.5 acc/loss 可視化,查看效果1.acc曲線和loss曲線
2.5 acc/loss 可視化,查看效果
1.acc曲線和loss曲線
history=model.fit(訓(xùn)練集數(shù)據(jù), 訓(xùn)練集標(biāo)簽, batch_size=, epochs=, validation_split=用作測(cè)試數(shù)據(jù)的比例,validation_data=測(cè)試集, validation_freq=測(cè)試頻率)
history: loss:
訓(xùn) 練 集
loss val_loss:測(cè)試集 loss
sparse_categorical_accuracy:訓(xùn)練集準(zhǔn)確率v
al_sparse_categorical_accuracy:測(cè)試集準(zhǔn)確率
# 顯示訓(xùn)練集和驗(yàn)證集的acc和loss曲線
acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
############################################### show ###############################################
# 顯示訓(xùn)練集和驗(yàn)證集的acc和loss曲線
acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()
acc和loss曲線:
import tensorflow as tf
import os
import numpy as np
from matplotlib import pyplot as plt
np.set_printoptions(threshold=np.inf)
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['sparse_categorical_accuracy'])
checkpoint_save_path = "./checkpoint/mnist.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
print('-------------load the model-----------------')
model.load_weights(checkpoint_save_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
save_weights_only=True,
save_best_only=True)
history = model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1,
callbacks=[cp_callback])
model.summary()
print(model.trainable_variables)
file = open('./weights.txt', 'w')
for v in model.trainable_variables:
file.write(str(v.name) + '
')
file.write(str(v.shape) + '
')
file.write(str(v.numpy()) + '
')
file.close()
############################################### show ###############################################
# 顯示訓(xùn)練集和驗(yàn)證集的acc和loss曲線
acc = history.history['sparse_categorical_accuracy']
val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc, label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss, label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()
總結(jié)
以上是生活随笔為你收集整理的Tensorflow2.0笔记27——acc/loss 可视化,查看效果的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。
- 上一篇: Mac下配置idk
- 下一篇: GIF/PNG/JPG和WEBP/bas