classifier of chains
生活随笔
收集整理的這篇文章主要介紹了
classifier of chains
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
from skmultilearn.problem_transform import ClassifierChain
from sklearn.naive_bayes import GaussianNB
#scikit-learn version>=0.21
from sklearn.metrics import multilabel_confusion_matrix
from scipy.sparse import csr_matrix
def svm():
clf = ClassifierChain(GaussianNB())
S = csr_matrix(train_labels)
#S為sprase matrix
clf.fit(train_features, S)
prediction = clf.predict(csr_matrix(test_features))
cnf_matrix = multilabel_confusion_matrix(y_true, y_prediction)
# print(cnf_matrix)
TN = cnf_matrix[:, 0, 0]
TP = cnf_matrix[:, 1, 1]
FN = cnf_matrix[:, 1, 0]
FP = cnf_matrix[:, 0, 1]
ACC = accuracy_score(y_true, y_prediction)
TPR = metrics.recall_score(y_true, y_prediction, average='macro')
TNR = np.mean(TN / (TN + FP))
F1_score = metrics.f1_score(y_true, y_prediction, average='macro') ?
from sklearn.naive_bayes import GaussianNB
#scikit-learn version>=0.21
from sklearn.metrics import multilabel_confusion_matrix
from scipy.sparse import csr_matrix
def svm():
clf = ClassifierChain(GaussianNB())
S = csr_matrix(train_labels)
#S為sprase matrix
clf.fit(train_features, S)
prediction = clf.predict(csr_matrix(test_features))
cnf_matrix = multilabel_confusion_matrix(y_true, y_prediction)
# print(cnf_matrix)
TN = cnf_matrix[:, 0, 0]
TP = cnf_matrix[:, 1, 1]
FN = cnf_matrix[:, 1, 0]
FP = cnf_matrix[:, 0, 1]
ACC = accuracy_score(y_true, y_prediction)
TPR = metrics.recall_score(y_true, y_prediction, average='macro')
TNR = np.mean(TN / (TN + FP))
F1_score = metrics.f1_score(y_true, y_prediction, average='macro') ?
轉載于:https://www.cnblogs.com/muamu/p/11550717.html
總結
以上是生活随笔為你收集整理的classifier of chains的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 实例2:python操作Excel文件
- 下一篇: 程序员专属红包封面来了,一共四款