P3386 【模板】二分图最大匹配(匈牙利算法,网络流)
生活随笔
收集整理的這篇文章主要介紹了
P3386 【模板】二分图最大匹配(匈牙利算法,网络流)
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
匈牙利
最大流
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<vector> #include<queue> #include <map>using namespace std; typedef long long ll; const int inf = 1 << 29, N = 50010, M = 300010; int head[N], ver[M], edge[M], Next[M], d[N]; int n, m, s, t, tot; ll maxflow; queue<int> q;void add(int x, int y, int z) {ver[++tot] = y, edge[tot] = z, Next[tot] = head[x], head[x] = tot;ver[++tot] = x, edge[tot] = 0, Next[tot] = head[y], head[y] = tot; }bool bfs() { // 在殘量網絡上構造分層圖memset(d, 0, sizeof(d));while (q.size()) q.pop();q.push(s); d[s] = 1;while (q.size()) {int x = q.front(); q.pop();for (int i = head[x]; i; i = Next[i])if (edge[i] && !d[ver[i]]) {q.push(ver[i]);d[ver[i]] = d[x] + 1;if (ver[i] == t) return 1;}}return 0; }int dinic(int x, int flow) { // 在當前分層圖上增廣if (x == t) return flow;int rest = flow, k;for (int i = head[x]; i && rest; i = Next[i])if (edge[i] && d[ver[i]] == d[x] + 1) {k = dinic(ver[i], min(rest, edge[i]));if (!k) d[ver[i]] = 0; // 剪枝,去掉增廣完畢的點edge[i] -= k;edge[i ^ 1] += k;rest -= k;}return flow - rest; }map<pair<int,int>,int>mp;int main() {int e;cin >> n >> m >> e;s = 0,t = n + m + 1; // cin >> s >> t; // 源點、匯點mp.clear();tot = 1;for (int i = 1; i <= e; i++) {int x, y, c;scanf("%d%d", &x, &y);if(x > n || y > m) continue;if(mp[{x,y + n}]) continue;mp[{x,y + n}] = 1;add(x, y + n, 1);}for(int i = 1;i <= n;i++) add(s,i,1);for(int i = n + 1;i <= n + m;i++) add(i,t,1);int flow = 0;while (bfs())while (flow = dinic(s, inf)) maxflow += flow;cout << maxflow << endl; }總結
以上是生活随笔為你收集整理的P3386 【模板】二分图最大匹配(匈牙利算法,网络流)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: play框架2.5.6教程——使用pla
- 下一篇: html标签可以嵌套吗,HTML标签的嵌