日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

Reasoning with Sarcasm by Reading In-between

發(fā)布時(shí)間:2023/12/14 编程问答 46 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Reasoning with Sarcasm by Reading In-between 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

Reasoning with Sarcasm by Reading In-between

click here:文章下載

方法綜述:

本文提出了新的模型SIARN(Singal-dimensional Intra-Attention Recurrent Networks)和MIARN(Multi-dimensional Intra-Attention Recurrent Networks)。

先給出一個(gè)定義,關(guān)系得分si,js_{i,j}si,j?表示單詞wiw_iwi?、wjw_jwj?間的信息關(guān)聯(lián)程度。二者的區(qū)別僅在于,SIARN中只考慮單詞對(duì)間的一種內(nèi)在關(guān)系,si,js_{i,j}si,j?是個(gè)標(biāo)量;而MIARN考慮單詞對(duì)間的多種(k種)內(nèi)在關(guān)系,si,js_{i,j}si,j?是個(gè)k維向量,再將其融合為一個(gè)標(biāo)量。

模型中包含三個(gè)子模型:Singal/Multi-dimensional Intra-Attention、LSTMPrediction Layer
Singal/Multi-dimensional Intra-Attention:通過(guò)單詞對(duì)間的信息,得到句子的Intra-Attentive Representation
LSTM:通過(guò)句子的序列信息,得到句子的Compositional Representation
Prediction Layer: 融合兩種信息表示,進(jìn)行二分類預(yù)測(cè)

各模型算法:

Singal/Multi-dimensional Intra-Attention

Sigal-dimensional:

si,j=Wa([wi;wj])+ba?si,j∈Rs_{i,j}=W_a([w_i;w_j])+b_a \implies s_{i,j} \in Rsi,j?=Wa?([wi?;wj?])+ba??si,j?R 標(biāo)量

Wa∈R2n×1,ba∈R;W_a \in R^{2n \times 1},b_a \in R;Wa?R2n×1,ba?R;

Multi-dimensional:

si,j^=Wq([wi;wj])+bq?si,j^∈Rk\hat{s_{i,j}}=W_q([w_i;w_j])+b_q \implies \hat{s_{i,j}} \in R^ksi,j?^?=Wq?([wi?;wj?])+bq??si,j?^?Rk k維向量
Wq∈R2n×k,bq∈Rk;W_q \in R^{2n \times k},b_q \in R^k;Wq?R2n×k,bq?Rk;

si,j=Wp(ReLU(si,j^))+bps_{i,j}=W_p(ReLU(\hat{s_{i,j}}))+b_psi,j?=Wp?(ReLU(si,j?^?))+bp?
Wp∈Rk×1,bp∈R;W_p \in R^{k \times 1},b_p \in R;Wp?Rk×1,bp?R;

??????????\Downarrow \Downarrow \Downarrow \Downarrow \Downarrow \Downarrow \Downarrow \Downarrow \Downarrow \Downarrow??????????

si,j=Wp(ReLU(Wq([wi;wj])))+bps_{i,j}=W_p(ReLU(W_q([w_i;w_j])))+b_psi,j?=Wp?(ReLU(Wq?([wi?;wj?])))+bp?
Wq∈R2n×k,bq∈Rk,Wp∈Rk×1,bp∈R;W_q \in R^{2n \times k},b_q \in R^k,W_p \in R^{k \times 1},b_p \in R;Wq?R2n×k,bq?Rk,Wp?Rk×1,bp?R;

從而,對(duì)于長(zhǎng)度為lll的句子,可以得到對(duì)稱矩陣s∈Rl×ls \in R^{l \times l}sRl×l。
對(duì)矩陣s進(jìn)行row-wise max-pooling,即按行取最大值,得到attention vectora∈Rla \in R^laRl

有了權(quán)重向量a,便可以對(duì)句子單詞進(jìn)行加權(quán)求和,得到Intra-Attentive Representationva∈Rnv_a \in R^nva?Rn:

LSTM

LSTM的每個(gè)時(shí)間步輸出hi∈Rdh_i \in R^dhi?Rd,可以表示為:

hi=LSTM(w,i),?i∈[1,...,l]h_i=LSTM(w,i),\forall i \in [1,...,l]hi?=LSTM(w,i),?i[1,...,l]

本文使用LSTM的最后時(shí)間步輸出,作為Compositional Representationvc∈Rdv_c \in R^dvc?Rd

vc=hlv_c=h_lvc?=hl?

ddd是LSTM隱藏層單元數(shù),lll是句子的最大長(zhǎng)度。

Prediction Layer

融合上述得到的Intra-Attentive Representation va∈Rnv_a \in R^nva?Rn、Compositional Representation vc∈Rdv_c \in R^dvc?Rd,得到融合表示向量 v∈Rdv \in R^dvRd,再進(jìn)行二分類輸出y^∈R2\hat{y} \in R^2y^?R2:

v=ReLU(Wz([va;vc])+bz)v=ReLU(W_z([v_a;v_c]) + b_z)v=ReLU(Wz?([va?;vc?])+bz?)
y^=Softmax(Wfv+bf)\hat{y}=Softmax(W_fv+b_f)y^?=Softmax(Wf?v+bf?)

其中,Wz∈R(d+n)×d,bz∈Rd,Wf∈Rd×2,Wf∈Rd×2,bf∈R2W_z \in R^{(d+n) \times d},b_z \in R^d,W_f \in R^{d \times 2},W_f \in R^{d \times 2}, b_f \in R^2Wz?R(d+n)×d,bz?Rd,Wf?Rd×2,Wf?Rd×2,bf?R2

訓(xùn)練目標(biāo):



待學(xué)習(xí)參數(shù):θ={Wp,bp,Wq,bq,Wz,bz,Wf,bf}\theta = \{W_p,b_p,W_q,b_q,W_z,b_z,W_f,b_f\}θ={Wp?,bp?,Wq?,bq?,Wz?,bz?,Wf?,bf?}
超參數(shù):k,n,d,λk, n, d, \lambdak,n,d,λ

總結(jié)

以上是生活随笔為你收集整理的Reasoning with Sarcasm by Reading In-between的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。