数值计算方法-引论
數值計算方法
誤差的來源
1.模型誤差
2.觀測誤差
3.截斷誤差:無窮過程用有限項代替
4.舍入誤差
近似數的誤差表示法
1.絕對誤差:e?=x?x?e^{*}=x-x^{*}e?=x?x?。設x是精確值x?x^{*}x?的一個近似值
絕對誤差限或稱精度:ε?\varepsilon^{*}ε?, ∣e?∣=∣x?x?∣≤ε?|e^{*}|=|x-x^{*}| \leq \varepsilon^{*}∣e?∣=∣x?x?∣≤ε?
∣x?x?∣≤12×10m?n|x-x^{*}| \leq \frac{1}{2}×10^{m-n}∣x?x?∣≤21?×10m?n
2.相對誤差:er?=x?x?x?=e?x?e_{r}^{*}=\frac{x-x^{*}}{x^{*}}=\frac{e^{*}}{x^{*}}er??=x?x?x??=x?e??
相對誤差限:εr?\varepsilon^{*}_{r}εr??,∣er?∣=∣e?x∣=∣x?x?x∣≤ε?∣x∣=εr?\left|e_{r}^{*}\right|=\left|\frac{e^{*}}{x}\right|=\left|\frac{x-x^{*}}{x}\right| \leq \frac{\varepsilon^{*}}{|x|}=\varepsilon_{r}^{*}∣er??∣=∣∣∣?xe??∣∣∣?=∣∣∣?xx?x??∣∣∣?≤∣x∣ε??=εr??
3.有效數字
(1)把數字寫成0.xxxxx獲取m
(2)看是不是四舍五入的結果,如果是的直接數數字得到l,如果不是與真實值相減
(3)絕對誤差小于1/2*10^(m-l)獲取l
4.有效數字與相對誤差
定理1.充分條件
數值運算誤差分析
1.函數運算誤差
數值穩定性和減小運算誤差
1.要避免相近兩數相減
2.要防止大數吃掉小數
3.注意簡化計算步驟,減少運算次數,避免誤差積累
總結
- 上一篇: 【MySQL】简单易学的MySQL安装教
- 下一篇: linux vi中字符替换,Linux