日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

pandas数据分析京东评论者衣服购买情况pyecharts生成可视化图表

發(fā)布時(shí)間:2023/12/14 编程问答 25 豆豆
生活随笔 收集整理的這篇文章主要介紹了 pandas数据分析京东评论者衣服购买情况pyecharts生成可视化图表 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

pyecharts官網(wǎng):?https://pyecharts.org/#/zh-cn/composite_charts?

# https://blog.csdn.net/weixin_45081575 import os import json import requests import pandas as pd import jieba.analyse from pyecharts import options as opts from pyecharts.globals import ThemeType from pyecharts.globals import SymbolType from pyecharts.charts import Pie,Bar,Map,WordCloud,Liquid,Pageurl = "https://club.jd.com/comment/productPageComments.action?callback=fetchJSON_comment98vv59&productId=100001068301&score=0&sortType=5&page={}&pageSize=10&isShadowSku=0&rid=0&fold=1" # url = "https://club.jd.com/comment/productPageComments.action?callback=fetchJSON_comment98&productId=100002148075&score=0&sortType=5&page={}&pageSize=10&isShadowSku=0&rid=0&fold=1"headers = {'Referer': 'https://item.jd.com/100001068301.html',# 'Sec-Fetch-Mode': 'no-cors','User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.87 Safari/537.36' } # 過(guò)濾詞 stop_words_txt = "stop_words.txt"def get_comment(file_name):num = 1for i in range(0,50):print(f"處理第{i+1}頁(yè)")resp = requests.get(url.format(i), headers=headers)resp_list = json.loads(resp.text[24:-2])# content 評(píng)價(jià);productColor 顏色;productSize 尺碼 referenceTime 購(gòu)買時(shí)間 nickname昵稱comment_list = []for comment in resp_list["comments"]:print(comment["nickname"])data = {"num":num,"nickname":comment["nickname"],"bra_size":comment['productSize'],"color":comment['productColor'],"comment":(comment['content']).replace("\n"," "),"date":comment['referenceTime']}comment_list.append(data)num += 1save_to_excel(file_name,comment_list)print("表格保存完畢")def save_to_excel(file_name,comment_list):# 如果存在,則追加數(shù)據(jù)到表格,第一次執(zhí)行的時(shí)候會(huì)創(chuàng)建表格,之后的數(shù)據(jù)則以追加的形式寫入if os.path.exists(file_name):df = pd.read_excel(file_name)df = df.append(comment_list)else:df = pd.DataFrame(comment_list)writer = pd.ExcelWriter(file_name)df.to_excel(excel_writer=writer,sheet_name="jd_comment",columns=["num","nickname","bra_size","color","comment","date"],index=False,encoding="utf-8")writer.save() # 顏色分布柱狀圖 https://blog.csdn.net/weixin_45081575/article/details/103449805 def color_chart(df):print("準(zhǔn)備生成:顏色分布柱狀圖")colors = list(df.color.value_counts().items())colors = colors[:10] # 取前面10個(gè)顏色# print(colors)bar = (Bar().add_xaxis(list(data[0] for data in colors)).add_yaxis("顏色購(gòu)買統(tǒng)計(jì)",list(data[1]for data in colors)).set_global_opts(title_opts=opts.TitleOpts(title="顏色分布柱狀圖"),xaxis_opts=opts.AxisOpts(name="顏色"),yaxis_opts=opts.AxisOpts(name="數(shù)量"),toolbox_opts=opts.ToolboxOpts() # ToolboxOpts工具箱))bar.render(path="顏色柱狀圖.html")# 購(gòu)買者分布柱狀圖 def nick_name(df):print("準(zhǔn)備生成:購(gòu)買者分布柱狀圖")nick_names = list(df.nickname.value_counts().items())nick_names = nick_names[:10]bar = (Bar().add_xaxis(list(data[0] for data in nick_names)).add_yaxis("購(gòu)買者數(shù)量",list(data[1] for data in nick_names)).set_global_opts(title_opts=opts.TitleOpts(title="購(gòu)買者分布柱狀圖"),xaxis_opts=opts.AxisOpts(name="購(gòu)買者"),yaxis_opts=opts.AxisOpts(name="數(shù)量"),toolbox_opts=opts.ToolboxOpts()))bar.render("購(gòu)買者分布柱狀圖.html") # 尺碼分布圖 def size_chart(df):print("準(zhǔn)備生成:尺碼分布柱狀圖")sizes = sorted(list(df.bra_size.value_counts().items()))bar = (Bar().add_xaxis(list(data[0] for data in sizes)).add_yaxis("尺碼購(gòu)買統(tǒng)計(jì)",list(data[1] for data in sizes)).set_global_opts(title_opts=opts.TitleOpts(title="尺碼分布柱狀圖"),xaxis_opts=opts.AxisOpts(name="尺碼"),yaxis_opts=opts.AxisOpts(name="數(shù)量"),toolbox_opts=opts.ToolboxOpts()))bar.render("尺碼柱狀圖.html")# 區(qū)間餅圖和柱狀圖 def avg_cup(df):print("準(zhǔn)備生成:區(qū)間餅圖和柱狀圖")size_list = sorted(list(df.bra_size.value_counts().items()))cup_dic = {i:0 for i in "ABCD"}for data in size_list:if "A" in data[0]:cup_dic['A'] += data[1]if "B" in data[0]:cup_dic['B'] += data[1]if "C" in data[0]:cup_dic['C'] += data[1]if "D" in data[0]:cup_dic['D'] += data[1]bar = (Bar().add_xaxis(list(cup_dic.keys())).add_yaxis("尺碼數(shù)量",list(cup_dic.values())).set_global_opts(title_opts=opts.TitleOpts(title="尺碼區(qū)間柱狀圖"),xaxis_opts=opts.AxisOpts(name="尺碼"),yaxis_opts=opts.AxisOpts(name="數(shù)量"),toolbox_opts=opts.ToolboxOpts()))bar.render("區(qū)間柱狀圖.html")pie = (Pie().add("數(shù)量",list(cup_dic.items())).set_global_opts(title_opts=opts.TitleOpts(title="尺碼區(qū)間餅圖")).set_series_opts(label_opts=opts.LabelOpts(formatter=":{c}(占比:ozvdkddzhkzd%)")) # b代表名字,c代表數(shù)量,d代表百分比)pie.render("區(qū)間餅圖.html")return (bar,pie)# 評(píng)論詞云 def word_cloud(df):print("準(zhǔn)備生成:評(píng)論詞云")if os.path.exists(stop_words_txt):jieba.analyse.set_stop_words(stop_words_txt)kw_list = jieba.analyse.textrank(''.join(df.comment),topK=65,withWeight=True)word_cloud = (WordCloud(init_opts=opts.InitOpts(bg_color='#c7edcc'))# '傳入列表,word_size_range為字體大小,shape為詞云的形狀'# 形狀 RECT、ROUND_RECT、TRIANGLE、DIAMOND、ARROW# mask_image = "aizhong-logo.png" # 自定義形狀# .add("",kw_list,word_size_range=[15, 100],mask_image="aizhong-logo.png").add("",kw_list,word_size_range=[15, 100],shape=SymbolType.DIAMOND).set_global_opts(title_opts=opts.TitleOpts(title="評(píng)論標(biāo)題詞云Top65"),toolbox_opts=opts.ToolboxOpts()))word_cloud.render("詞云.html")return word_cloud # 水滴圖 def water():print("準(zhǔn)備生成:今日濕度水滴圖")liquid = (Liquid().add("lq", [0.45,0.5,0.6],is_outline_show=False,shape=SymbolType.DIAMOND) # 第一個(gè)值為顯示的值百分比,第二個(gè)指為水的分量.set_global_opts(title_opts=opts.TitleOpts(title="今日濕度水滴圖"),toolbox_opts=opts.ToolboxOpts()))liquid.render("今日濕度水滴圖.html")return liquidif __name__ == '__main__':file_name = "jd_comment.xlsx"if not os.path.exists(file_name):print("表格不存在")get_comment(file_name)df = pd.read_excel(file_name)color_chart(df)word_cloud = word_cloud(df)nick_name(df)size_chart(df)bar,pie = avg_cup(df)liquid = water()# 接下來(lái)生成組合圖表 https://pyecharts.org/#/zh-cn/composite_chartspage = Page(layout=Page.DraggablePageLayout)page.add(liquid,bar,pie,word_cloud)# page.render("all.html")# 這個(gè)生成的是按順序存放的圖表# 先生成all.html,然后就不要再重新生成了,直接在這上面調(diào)整到合適位置后點(diǎn)擊左上角save config,生成chart_config.json# 讀取all.html,并利用chart_config.json的設(shè)置重新生成新的resize_render.htmlPage.save_resize_html("all.html", cfg_file="chart_config.json")

參考:https://blog.csdn.net/weixin_45081575/article/details/103449805

其中過(guò)濾詞stop_words.txt,第一行要空出來(lái),從第二行開(kāi)始寫,一行一個(gè)詞,保存成utf-8編碼格式,例如:京東

總結(jié)

以上是生活随笔為你收集整理的pandas数据分析京东评论者衣服购买情况pyecharts生成可视化图表的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。