日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

马尔可夫的营销归因

發布時間:2023/12/15 编程问答 26 豆豆
生活随笔 收集整理的這篇文章主要介紹了 马尔可夫的营销归因 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

An edited version of this article was first published on ClickZ: Marketer’s guide to data-driven marketing attribution.

本文的編輯版本首次發布在ClickZ:基于市場營銷人員的數據驅動營銷歸因指南中 。

Marketing attribution is a way of measuring the value of the campaigns and channels that are reaching your potential customers. The point in time when a potential customer interacts with a campaign is called a touchpoint, and a collection of touchpoints forms a buyer journey. Marketers use the results of an attribution model to understand what touchpoints have the most influence on successful buyer journeys, so that they can make more informed decisions on how to optimise investment in future marketing resources.

營銷歸因是一種衡量吸引潛在客戶的廣告系列和渠道的價值的方法。 潛在客戶與廣告系列互動的時間點稱為接觸點,接觸點的集合構成了購買者的旅程。 營銷人員使用歸因模型的結果來了解哪些接觸點對成功的購買者旅程具有最大的影響,以便他們可以就如何優化對未來營銷資源的投資做出更明智的決策。

Buyer journeys are rarely straightforward and the paths to success can be long and winding. With so many touchpoints to consider it is difficult to distinguish between the true high and low impact interactions, which can result in an inaccurate division of credit and a false representation of marketing performance. This is why choosing the best attribution model for your business is so important.

買家的旅程很少是直截了當的,成功的道路可能漫長而曲折。 考慮到這么多的接觸點,很難區分真正的高影響力互動和低影響力互動,這可能導致信貸分配不準確和營銷績效的錯誤表述。 這就是為什么為您的業務選擇最佳歸因模型如此重要的原因。

In this post, I provide some insight into how Cloudera has used Cloudera products to build a custom, data-driven attribution model to measure the performance of our global campaigns.

在本文中,我將提供一些有關Cloudera如何使用Cloudera產品來構建自定義,數據驅動的歸因模型以衡量我們的全球活動績效的見解。

傳統模式的局限性 (Limitations of traditional models)

All attribution models have their pros and cons, but one drawback the traditional models have in common is that they are rules based. The user has to decide up front how they want the credit for sales events to be divided between the touchpoints. Traditional models include:

所有歸因模型都有其優缺點,但是傳統模型的一個缺點是它們都是基于規則的。 用戶必須預先決定他們如何希望在接觸點之間分配銷售活動的功勞。 傳統模型包括:

Luckily there are more sophisticated data-driven approaches that are able to capture the intricacies of buyer journeys by modelling how touchpoints actually interact with buyers, and each other, to influence a desired sales outcome. A data-driven model provides marketers with deeper insight into the importance of campaigns and channels, driving better marketing accountability and efficiency.

幸運的是,存在更復雜的數據驅動方法,這些方法可以通過對接觸點實際上如何與買方交互以及如何與買方交互以影響期望的銷售結果進行建模來捕獲買方旅程的復雜性。 數據驅動的模型為營銷人員提供了對廣告系列和渠道重要性的更深入的了解,從而提高了營銷責任和效率。

Cloudera的數據驅動方法 (Cloudera’s data-driven approach)

The first attribution model we evaluated was based on the Shapley value from cooperative game theory. I covered the details of this model in a previous post. This popular (Nobel prize winning) model provided much more insight into channel performance than the traditional approaches, but in its most fundamental implementation it didn’t scale to handle the number of touchpoints we wanted to include. The Shapley model performed well on a relatively small number of channels, but our requirement was to perform attribution for all campaigns, which can equate to hundreds of touchpoints along a buyer’s journey.

我們評估的第一個歸因模型是基于合作博弈理論的Shapley值。 我在上一篇文章中介紹了該模型的詳細信息。 與傳統方法相比,這種流行的(獲得諾貝爾獎的)模型提供了對渠道性能的更多了解,但是在其最基本的實施中,它無法擴展以處理我們想要包含的接觸點數量。 Shapley模型在相對較少的渠道上表現良好,但我們的要求是對所有廣告系列進行歸因,這可以等同于買方整個旅程中的數百個接觸點。

Before investing time into scaling out the Shapley algorithm, we researched alternate methods and decided to evaluate the use of Markov models to solve the attribution problem. We used the ChannelAttribution R package for the implementation and found that it produced similar results to the Shapley model, it could scale to a large number of touchpoints, and was easy to set up and use in Cloudera Data Science Workbench (CDSW).

在花時間擴展Shapley算法之前,我們研究了替代方法,并決定評估使用Markov模型解決歸因問題。 我們使用ChannelAttribution R包進行實施,發現它產生了與Shapley模型相似的結果,可以擴展到大量接觸點,并且易于在Cloudera Data Science Workbench(CDSW)中設置和使用。

馬爾可夫歸因模型 (Markov attribution models)

Markov is a probabilistic model that represents buyer journeys as a graph, with the graph’s nodes being the touchpoints or “states”, and the graph’s connecting edges being the observed transitions between those states. For example, a buyer watches a product Webinar (first state) then browses to LinkedIn (transition) where they click on an Ad impression for the same product (second state).

馬爾可夫是一個概率模型,它以圖表的形式表示買方的旅程,圖表的節點是接觸點或“狀態”,圖表的連接邊是在這些狀態之間觀察到的過渡。 例如,買主觀看產品網絡研討會 (第一狀態),然后瀏覽到LinkedIn(過渡),在該處他們單擊同一產品的廣告展示(第二狀態)。

The key ingredient to the model is the transition probabilities (the likelihood of moving between states). The number of times buyers have transitioned between two states is converted into a probability, and the complete graph can be used to measure the importance of each state and the most likely paths to success.

該模型的關鍵要素是轉移概率(狀態之間移動的可能性)。 買家在兩個州之間轉換的次數轉換為概率,并且完整的圖表可用于衡量每個州的重要性以及最可能的成功之路。

For example, in a sample of buyer journey data we observe that the Webinar touchpoint occurs 8 times, and buyers watched the webinar followed by clicking on the LinkedIn Ad only 3 times, so the transition probability between the two states is 3 / 8 = 0.375 (37.5%). A probability is calculated for every transition to complete the graph.

例如,在購買者旅程數據的樣本中,我們觀察到網絡研討會接觸點發生了8次,并且購買者觀看了網絡研討會,隨后僅點擊了LinkedIn 廣告 3次,因此兩種狀態之間的轉換概率為3/8 = 0.375 (37.5%)。 計算每個過渡完成圖的概率。

Before we get to calculating campaign attribution, the Markov graph can tell us a couple of useful nuggets of information about our buyer journeys. From the example above you can see that the path with the highest probability of success is “Start > Webinar > Campaign Z > Success” with a total probability of 42.5% (1.0 * 0.425 * 1.0).

在計算廣告系列歸因之前,馬爾可夫圖可以告訴我們一些有用的關于購買者旅程的信息。 從上面的示例中,您可以看到成功概率最高的路徑是“ 開始>網絡研討會>廣告系列Z>成功 ”,總概率為42.5%(1.0 * 0.425 * 1.0)。

The Markov graph can also tell us the overall success rate; that is, the likelihood of a successful buyer journey given the history of all buyer journeys. The success rate is a baseline for overall marketing performance and the needle for measuring the effectiveness of any changes. The example Markov graph above has a success rate of 67.5%:

馬爾可夫圖還可以告訴我們總體成功率; 也就是說,根據所有買家旅程的歷史記錄,成功的買家旅程的可能性。 成功率是整體營銷績效的基準,是衡量任何變化的有效性的關鍵。 上面的示例馬爾可夫圖的成功率為67.5%:

廣告活動歸屬 (Campaign attribution)

A Markov graph can be used to measure the importance of each campaign by calculating what is known as the Removal Effect. A campaign’s effectiveness is determined by removing it from the graph and simulating buyer journeys to measure the change in success rate without it in place. Removal Effect is a proxy for weight, and it’s calculated for each campaign in the Markov graph.

馬爾可夫圖可通過計算所謂的“ 去除效果”來衡量每個活動的重要性。 廣告活動的效果是通過將其從圖表中刪除并模擬買家的旅程來衡量成功率變化(而不進行設置)來確定的。 去除效果是權重的代表,它是針對馬爾可夫圖中的每個廣告系列計算得出的。

Using Removal Effect for marketing attribution is the final piece of the puzzle. To calculate each campaign’s attribution value we can use the following formula: A = V * (Rt / Rv)

使用“去除效果”進行市場營銷歸因是最后一個難題。 要計算每個廣告系列的歸因值,我們可以使用以下公式: A = V *(Rt / Rv)

  • A = Campaign’s attribution value

    A =廣告系列的歸因值

  • V = Total value to divide. For example, the total USD value of all successful buyer journeys used as input to the Markov model

    V =要除的總值。 例如,所有成功買家旅程的總美元價值用作馬爾可夫模型的輸入

  • Rt = Campaign’s Removal Effect

    Rt =廣告系列的移除效果

  • Rv = Sum of all Removal Effect values

    Rv =所有去除效果值的總和

Let’s walk through an example. Say that during the first quarter of the fiscal year the total USD value of all successful buyer journeys is $1M. The same buyer journeys are used to build a Markov model and it calculated the Removal Effect for our Ad campaign to be 0.7 (i.e. The buyer journey success rate dropped by 70% when the Ad campaign was removed from the Markov graph). We know the Removal Effect values for every campaign observed in the input data, and for this example let’s say they sum to 2.8. By plugging the numbers into the formula we calculate the attribution value for our Ad campaign to be $250k:

讓我們來看一個例子。 假設在會計年度的第一季度,所有成功的買家旅程的總美元價值為100萬美元 。 使用相同的買家旅程來構建馬爾可夫模型,并計算出我們的廣告系列的去除效果為0.7 (即,當從Markov圖中刪除廣告系列時,買家旅程成功率下降了70%)。 我們知道在輸入數據中觀察到的每個活動的“去除效果”值,對于這個示例,假設它們的總和為2.8 。 通過將數字插入公式,我們得出廣告系列的歸因價值為25萬美元

$250,000 = $1,000,000 * (0.7 / 2.8)

$ 250,000 = $ 1,000,000 *(0.7 / 2.8)

In addition to this, we calculate campaign ROI by subtracting the cost of running a campaign over the same period of time from its attribution value.

除此之外,我們通過從廣告活動的歸因值中減去在相同時間段內運行廣告活動的成本來計算廣告活動的投資回報率。

What’s nice about the ChannelAttribution R package is it does all of this for you and even includes implementations for three of the traditional rules-based algorithms for comparison (first-touch, last-touch, and linear-touch). Theres a new Python implementation too.

ChannelAttribution R軟件包的好處是它可以為您完成所有這些工作,甚至包括三種傳統的基于規則的比較算法(初次觸摸,最后一次觸摸和線性觸摸)的實現。 也有一個新的Python實現。

Cloudera上的Cloudera (Cloudera on Cloudera)

We’re proud of our data practice at Cloudera. The marketing attribution application was developed by Cloudera’s Marketing and Data Centre of Excellence lines of business. It’s built on our internal Enterprise Data Hub and the Markov models run in Cloudera Data Science Workbench (CDSW).

我們為Cloudera的數據實踐感到自豪。 營銷歸因應用程序是由Cloudera的營銷和卓越數據中心業務部門開發的。 它基于我們內部的企業數據中心構建,并且Markov模型在Cloudera Data Science Workbench(CDSW)中運行 。

By leveraging a data-driven attribution model we have eliminated the biases associated with traditional attribution mechanisms. We have been able to understand how various messages influence our potential customers and the variances by geography and revenue type. Now that we have solid and trusted data behind attribution, we’re confident in using the results to inform and drive our marketing mix strategy and investment decisions. And we can rely on the numbers when we partner with sales teams to drive our marketing strategies going forward.

通過利用數據驅動的歸因模型,我們消除了與傳統歸因機制相關的偏見。 我們已經能夠了解各種消息如何影響我們的潛在客戶以及按地理位置和收入類型劃分的差異。 既然歸因于背后的是可靠且可靠的數據,我們有信心使用結果來指導和推動我們的營銷組合策略和投資決策。 與銷售團隊合作時,我們可以依靠數字來推動我們的營銷策略。

翻譯自: https://towardsdatascience.com/multi-channel-marketing-attribution-with-markov-6b744c0b119a

總結

以上是生活随笔為你收集整理的马尔可夫的营销归因的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 香蕉污视频 | 日韩中文三级 | 国产精品久久久久久久久久直播 | 午夜天堂av | 三级自拍视频 | 日本女人一区二区三区 | 娇妻第一次尝试交换的后果 | 美女毛片在线 | 91麻豆精品国产91久久久久久 | 日韩精品专区 | 性欧美17一18内谢 | 色无极在线| 爱逼av | 国产无精乱码一区二区三区 | 成人视品 | 欧美伦理一区二区三区 | 久久黄色免费视频 | 欧美精产国品一二三区 | 久久大片| 亚洲高清在线观看视频 | 97射射| 丁香一区二区三区 | 亚洲a精品 | 久久久精品在线 | 97黄色片| 久久国产经典视频 | 日韩在线综合 | 看免费黄色片 | 看av网| 性色av一区二区三区 | 视频二区欧美 | 欧美日韩卡一卡二 | 中文视频一区 | 亚欧日韩av| 午夜性色福利视频 | 亚洲天堂自拍 | 婷婷五月综合久久中文字幕 | www.四虎影视 | 操人在线观看 | 天天舔天天| 又粗又大又硬毛片免费看 | 黄网站色视频 | 日韩一区精品 | 宗合久久| 99成人在线| 91精品国产色综合久久不卡电影 | 爱av在线 | 国产精品三区在线观看 | 黄色小视频在线播放 | 亚洲精品亚洲人成人网 | china国产乱xxxxx绿帽 | 中日韩av电影| 国产a自拍 | 久久久久久黄色 | 波多野结衣视频免费在线观看 | 人人看人人模 | 狠狠插狠狠干 | 亚洲激情av| 久久精品中文 | 欧美啪啪一区二区 | 亚洲国产永久 | 成人免费看片' | 深夜免费福利 | 成人性生活免费看 | 亚洲视频456| 久久网站免费 | 美女屁股眼视频网站 | 中文字幕在线观看视频免费 | 国产精品无码一区 | 欧洲高潮三级做爰 | 国产又粗又猛又爽又黄 | 久久尤物视频 | 国产青青操 | 亚洲爱爱视频 | 国产精品久久久久久久久久久久 | 69堂在线观看 | 国产黄色在线播放 | 欧洲在线一区 | 日韩精品成人一区二区在线 | 午夜激情网址 | 国产精品久久欧美久久一区 | 日韩黄色精品视频 | www.在线观看av | 精品一区二区无码 | 午夜小福利 | 2020自拍偷拍| 日韩精品在线一区 | 亲子伦视频一区二区三区 | 亚洲偷偷| 国产三级高清 | 国产精品一区二区免费在线观看 | 日韩在线视频网站 | 91亚洲一区二区三区 | 国模无码视频一区二区三区 | 国产a级淫片 | 2019中文在线观看 | 国产精品嫩草影院桃色 | 在线一区观看 | 成人影视网址 |