日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

PCA之奇异值分解

發布時間:2023/12/15 编程问答 23 豆豆
生活随笔 收集整理的這篇文章主要介紹了 PCA之奇异值分解 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

參考:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html(講的很詳細,可直接轉到閱讀。)
PCA的實現一般有兩種,一種是用特征值分解去實現的,一種是用奇異值分解去實現的。 在機器學習領域,有相當多的應用與奇異值都可以扯上關系,比如做feature reduction的PCA,做數據壓縮(以圖像壓縮為代表)的算法,還有做搜索引擎語義層次檢索的LSI(Latent Semantic Indexing)
1、奇異值與特征值
特征值分解和奇異值分解在機器學習領域都是屬于滿地可見的方法。兩者有著很緊密的關系,我在接下來會談到,特征值分解和奇異值分解的目的都是一樣,就是提取出一個矩陣最重要的特征。
1)特征值:
如果說一個向量v是方陣A的特征向量,將一定可以表示成下面的形式:

這時候λ就被稱為特征向量v對應的特征值,一個矩陣的一組特征向量是一組正交向量。特征值分解是將一個矩陣分解成下面的形式:

其中Q是這個矩陣A的特征向量組成的矩陣,Σ是一個對角陣,每一個對角線上的元素就是一個特征值。首先,要明確的是,一個矩陣其實就是一個線性變換,因為一個矩陣乘以一個向量后得到的向量,其實就相當于將這個向量進行了線性變換。比如說下面的一個矩陣:

它其實對應的線性變換是下面的形式:

因為這個矩陣M乘以一個向量(x,y)的結果是:

上面的矩陣是對稱的,所以這個變換是一個對x,y軸的方向一個拉伸變換(每一個對角線上的元素將會對一個維度進行拉伸變換,當值>1時,是拉長,當值<1時時縮短),當矩陣不是對稱的時候,假如說矩陣是下面的樣子:

它所描述的變換是下面的樣子:

這其實是在平面上對一個軸進行的拉伸變換(如藍色的箭頭所示),在圖中,藍色的箭頭是一個最主要的變化方向(變化方向可能有不止一個),如果我們想要描述好一個變換,那我們就描述好這個變換主要的變化方向就好了。反過頭來看看之前特征值分解的式子,分解得到的Σ矩陣是一個對角陣,里面的特征值是由大到小排列的,這些特征值所對應的特征向量就是描述這個矩陣變化方向(從主要的變化到次要的變化排列)
當矩陣是高維的情況下,那么這個矩陣就是高維空間下的一個線性變換,這個線性變化可能沒法通過圖片來表示,但是可以想象,這個變換也同樣有很多的變換方向,我們通過特征值分解得到的前N個特征向量,那么就對應了這個矩陣最主要的N個變化方向。我們利用這前N個變化方向,就可以近似這個矩陣(變換)。也就是之前說的:提取這個矩陣最重要的特征。
總結一下,特征值分解可以得到特征值與特征向量,特征值表示的是這個特征到底有多重要,而特征向量表示這個特征是什么,可以將每一個特征向量理解為一個線性的子空間,我們可以利用這些線性的子空間干很多的事情。不過,特征值分解也有很多的局限,比如說變換的矩陣必須是方陣。
2)奇異值:
下面談談奇異值分解。特征值分解是一個提取矩陣特征很不錯的方法,但是它只是對方陣而言的,在現實的世界中,我們看到的大部分矩陣都不是方陣,比如說有N個學生,每個學生有M科成績,這樣形成的一個N * M的矩陣就不可能是方陣,我們怎樣才能描述這樣普通的矩陣呢的重要特征呢?奇異值分解可以用來干這個事情,奇異值分解是一個能適用于任意的矩陣的一種分解的方法:

假設A是一個N * M的矩陣,那么得到的U是一個N * N的方陣(里面的向量是正交的,U里面的向量稱為左奇異向量),Σ是一個N * M的矩陣(除了對角線的元素都是0,對角線上的元素稱為奇異值),V’(V的轉置)是一個N * N的矩陣,里面的向量也是正交的,V里面的向量稱為右奇異向量),從圖片來反映幾個相乘的矩陣的大小可得下面的圖片

那么奇異值和特征值是怎么對應起來的呢?首先,我們將一個矩陣A的轉置 乘以A,將會得到一個方陣,我們用這個方陣求特征值可以得到:

這里得到的v,就是我們上面的右奇異向量。此外我們還可以得到:

這里的σ就是上面說的奇異值,u就是上面說的左奇異向量。奇異值σ跟特征值類似,在矩陣Σ中也是從大到小排列,而且σ的減少特別的快,在很多情況下,前10%甚至1%的奇異值的和就占了全部的奇異值之和的99%以上了。也就是說,我們也可以用前r大的奇異值來近似描述矩陣,這里定義一下部分奇異值分解:

r是一個遠小于m、n的數,這樣矩陣的乘法看起來像是下面的樣子:

右邊的三個矩陣相乘的結果將會是一個接近于A的矩陣,在這兒,r越接近于n,則相乘的結果越接近于A。而這三個矩陣的面積之和(在存儲觀點來說,矩陣面積越小,存儲量就越小)要遠遠小于原始的矩陣A,我們如果想要壓縮空間來表示原矩陣A,我們存下這里的三個矩陣:U、Σ、V就好了。
2、奇異值與主成分分析(PCA):
主成分分析在上一節里面也講了一些,這里主要談談如何用SVD去解PCA的問題。PCA的問題其實是一個基的變換,使得變換后的數據有著最大的方差。方差的大小描述的是一個變量的信息量,我們在講一個東西的穩定性的時候,往往說要減小方差,如果一個模型的方差很大,那就說明模型不穩定了。但是對于我們用于機器學習的數據(主要是訓練數據),方差大才有意義,不然輸入的數據都是同一個點,那方差就為0了,這樣輸入的多個數據就等同于一個數據了。以下面這張圖為例子:

這個假設是一個攝像機采集一個物體運動得到的圖片,上面的點表示物體運動的位置,假如我們想要用一條直線去擬合這些點,那我們會選擇什么方向的線呢?當然是圖上標有signal的那條線。如果我們把這些點單純的投影到x軸或者y軸上,最后在x軸與y軸上得到的方差是相似的(因為這些點的趨勢是在45度左右的方向,所以投影到x軸或者y軸上都是類似的),如果我們使用原來的xy坐標系去看這些點,容易看不出來這些點真正的方向是什么。但是如果我們進行坐標系的變化,橫軸變成了signal的方向,縱軸變成了noise的方向,則就很容易發現什么方向的方差大,什么方向的方差小了。
一般來說,方差大的方向是信號的方向,方差小的方向是噪聲的方向,我們在數據挖掘中或者數字信號處理中,往往要提高信號與噪聲的比例,也就是信噪比。對上圖來說,如果我們只保留signal方向的數據,也可以對原數據進行不錯的近似了。
PCA的全部工作簡單點說,就是對原始的空間中順序地找一組相互正交的坐標軸,第一個軸是使得方差最大的,第二個軸是在與第一個軸正交的平面中使得方差最大的,第三個軸是在與第1、2個軸正交的平面中方差最大的,這樣假設在N維空間中,我們可以找到N個這樣的坐標軸,我們取前r個去近似這個空間,這樣就從一個N維的空間壓縮到r維的空間了,但是我們選擇的r個坐標軸能夠使得空間的壓縮使得數據的損失最小。
還是假設我們矩陣每一行表示一個樣本,每一列表示一個feature,用矩陣的語言來表示,將一個m * n的矩陣A的進行坐標軸的變化,P就是一個變換的矩陣從一個N維的空間變換到另一個N維的空間,在空間中就會進行一些類似于旋轉、拉伸的變化。

而將一個m * n的矩陣A變換成一個m * r的矩陣,這樣就會使得本來有n個feature的,變成了有r個feature了(r < n),這r個其實就是對n個feature的一種提煉,我們就把這個稱為feature的壓縮。用數學語言表示就是:

但是這個怎么和SVD扯上關系呢?之前談到,SVD得出的奇異向量也是從奇異值由大到小排列的,按PCA的觀點來看,就是方差最大的坐標軸就是第一個奇異向量,方差次大的坐標軸就是第二個奇異向量…我們回憶一下之前得到的SVD式子:

在矩陣的兩邊同時乘上一個矩陣V,由于V是一個正交的矩陣,所以V轉置乘以V得到單位陣I,所以可以化成后面的式子

將后面的式子與A * P那個m * n的矩陣變換為m * r的矩陣的式子對照看看,在這里,其實V就是P,也就是一個變化的向量。這里是將一個m * n 的矩陣壓縮到一個m * r的矩陣,也就是對列進行壓縮,如果我們想對行進行壓縮(在PCA的觀點下,對行進行壓縮可以理解為,將一些相似的sample合并在一起,或者將一些沒有太大價值的sample去掉)怎么辦呢?同樣我們寫出一個通用的行壓縮例子:

這樣就從一個m行的矩陣壓縮到一個r行的矩陣了,對SVD來說也是一樣的,我們對SVD分解的式子兩邊乘以U的轉置U’

這樣我們就得到了對行進行壓縮的式子。可以看出,其實PCA幾乎可以說是對SVD的一個包裝,如果我們實現了SVD,那也就實現了PCA了,而且更好的地方是,有了SVD,我們就可以得到兩個方向的PCA,如果我們對A’A進行特征值的分解,只能得到一個方向的PCA。

總結

以上是生活随笔為你收集整理的PCA之奇异值分解的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。