图像处理的交并比(IoU)
生活随笔
收集整理的這篇文章主要介紹了
图像处理的交并比(IoU)
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
- 本文固定鏈接: https://www.lao-wang.com/?p=114
- 轉載: searky 2017年07月31日 于 老王的網站 發表
交并比(Intersection-over-Union,IoU),目標檢測中使用的一個概念,是產生的候選框(candidate bound)與原標記框(ground truth bound)的交疊率,即它們的交集與并集的比值。最理想情況是完全重疊,即比值為1。
計算公式:
Python實現代碼:
def calculateIoU(candidateBound, groundTruthBound):cx1 = candidateBound[0]cy1 = candidateBound[1]cx2 = candidateBound[2]cy2 = candidateBound[3]gx1 = groundTruthBound[0]gy1 = groundTruthBound[1]gx2 = groundTruthBound[2]gy2 = groundTruthBound[3]carea = (cx2 - cx1) * (cy2 - cy1) #C的面積garea = (gx2 - gx1) * (gy2 - gy1) #G的面積x1 = max(cx1, gx1)y1 = max(cy1, gy1)x2 = min(cx2, gx2)y2 = min(cy2, gy2)w = max(0, x2 - x1)h = max(0, y2 - y1)area = w * h #C∩G的面積iou = area / (carea + garea - area)return ioudef calculateIoU(candidateBound, groundTruthBound):cx1 = candidateBound[0]cy1 = candidateBound[1]cx2 = candidateBound[2]cy2 = candidateBound[3]gx1 = groundTruthBound[0]gy1 = groundTruthBound[1]gx2 = groundTruthBound[2]gy2 = groundTruthBound[3]carea = (cx2 - cx1) * (cy2 - cy1) #C的面積garea = (gx2 - gx1) * (gy2 - gy1) #G的面積x1 = max(cx1, gx1)y1 = max(cy1, gy1)x2 = min(cx2, gx2)y2 = min(cy2, gy2)w = max(0, x2 - x1)h = max(0, y2 - y1)area = w * h #C∩G的面積iou = area / (carea + garea - area)return iou<br /><br />
| ? | ? |
總結
以上是生活随笔為你收集整理的图像处理的交并比(IoU)的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 今日头条:“悟空问答”App 再次上线消
- 下一篇: 大疆推出 Ronin 4D 电影机 L