日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

二次函数三点式

發布時間:2023/12/16 编程问答 31 豆豆
生活随笔 收集整理的這篇文章主要介紹了 二次函数三点式 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

拉格朗日插值法:

已知二次函數過三個點 $(x1,y1)$,$(x2,y2)$,$(x3,y3)$
求函數的解析式。

你還在 高斯消元 ?!

二次函數的三點式表示法,讓你遠離$EPS$蒙不對的煩惱。

?$f(x)$ $=$ $\frac{(x-x_{2})(x-x_{3})}{(x_{1}-x_{2})(x_{1}-x_{3})}*y_{1}$ $+$ $\frac{(x-x_{1})(x-x_{3})}{(x_{2}-x_{1})(x_{2}-x_{3})}*y_{2}$ $+$ $\frac{(x-x_{1})(x-x_{2})}{(x_{3}-x_{1})(x_{3}-x_{2})}*y_{3}$

?$f(x)$ $=$ $\frac{x^{2}-(x_{2}+x_{3})x+x_{2}x_{3}}{(x_{1}-x_{2})(x_{1}-x_{3})}*y_{1}$ $+$ $\frac{x^{2}-(x_{1}+x_{3})x+x_{1}x_{3}}{(x_{2}-x_{1})(x_{2}-x_{3})}*y_{2}$ $+$ $\frac{x^{2}-(x1+x2)x+x_{1}x_{2}}{(x_{3}-x_{1})(x_{3}-x_{2})}*y_{3}$

我們發現,分母通分的話,拆分后在以$x^{n}$為關鍵字合并同類項可得。

ps:懶得打LATEX,所以部分過程省略。

?$(x_{1}-x_{2})(x_{1}-x_{3})(x_{2}-x_{3})f(x)$ $=$

?

$[x_{1}(y_{3}-y_{2})+x_{2}(y_{1}-y_{3})+x_{3}(y_{2}-y{1})]*x^{2}$ $+$

?

$[x_{1}^{2}(y_{2}-y_{3})+x_{2}^{2}(y_{3}-y_{1})+x_{3}^{2}(y_{1}-y{2})]*x$ $+$

?

$x_{2}x_{3}y_{1}*(x_{2}-x_{3})+x_{1}x_{3}y_{2}*(x_{3}-x_{1})+x_{1}x_{2}y_{3}*(x_{1}-x_{2})$

這樣的話,各個系數就直接出來了嘛。。。如果我們讓 $x_{1}>=x_{2}>=x_{3}$ 的話就更好了。

二次項系數:
?$\frac{[x_{1}(y_{3}-y_{2})+x_{2}(y_{1}-y_{3})+x_{3}(y_{2}-y{1})]}{(x_{1}-x_{2})(x_{1}-x_{3})(x_{2}-x_{3})}$

一次項系數:
?$\frac{[x_{1}^{2}(y_{2}-y_{3})+x_{2}^{2}(y_{3}-y_{1})+x_{3}^{2}(y_{1}-y{2})]}{(x_{1}-x_{2})(x_{1}-x_{3})(x_{2}-x_{3})}$

常數項:
?$\frac{x_{2}x_{3}y_{1}*(x_{2}-x_{3})+x_{1}x_{3}y_{2}*(x_{3}-x_{1})+x_{1}x_{2}y_{3}*(x_{1}-x_{2})}{(x_{1}-x_{2})(x_{1}-x_{3})(x_{2}-x_{3})}$

好了。就解到這里吧。剩下的東西就交給$DEVC++$來做了。

總結

以上是生活随笔為你收集整理的二次函数三点式的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。