二次函数三点式
拉格朗日插值法:
已知二次函數過三個點 $(x1,y1)$,$(x2,y2)$,$(x3,y3)$
求函數的解析式。
你還在 高斯消元 ?!
二次函數的三點式表示法,讓你遠離$EPS$蒙不對的煩惱。
?$f(x)$ $=$ $\frac{(x-x_{2})(x-x_{3})}{(x_{1}-x_{2})(x_{1}-x_{3})}*y_{1}$ $+$ $\frac{(x-x_{1})(x-x_{3})}{(x_{2}-x_{1})(x_{2}-x_{3})}*y_{2}$ $+$ $\frac{(x-x_{1})(x-x_{2})}{(x_{3}-x_{1})(x_{3}-x_{2})}*y_{3}$
?$f(x)$ $=$ $\frac{x^{2}-(x_{2}+x_{3})x+x_{2}x_{3}}{(x_{1}-x_{2})(x_{1}-x_{3})}*y_{1}$ $+$ $\frac{x^{2}-(x_{1}+x_{3})x+x_{1}x_{3}}{(x_{2}-x_{1})(x_{2}-x_{3})}*y_{2}$ $+$ $\frac{x^{2}-(x1+x2)x+x_{1}x_{2}}{(x_{3}-x_{1})(x_{3}-x_{2})}*y_{3}$
我們發現,分母通分的話,拆分后在以$x^{n}$為關鍵字合并同類項可得。
ps:懶得打LATEX,所以部分過程省略。
?$(x_{1}-x_{2})(x_{1}-x_{3})(x_{2}-x_{3})f(x)$ $=$
?
$[x_{1}(y_{3}-y_{2})+x_{2}(y_{1}-y_{3})+x_{3}(y_{2}-y{1})]*x^{2}$ $+$
?
$[x_{1}^{2}(y_{2}-y_{3})+x_{2}^{2}(y_{3}-y_{1})+x_{3}^{2}(y_{1}-y{2})]*x$ $+$
?
$x_{2}x_{3}y_{1}*(x_{2}-x_{3})+x_{1}x_{3}y_{2}*(x_{3}-x_{1})+x_{1}x_{2}y_{3}*(x_{1}-x_{2})$
這樣的話,各個系數就直接出來了嘛。。。如果我們讓 $x_{1}>=x_{2}>=x_{3}$ 的話就更好了。
二次項系數:
?$\frac{[x_{1}(y_{3}-y_{2})+x_{2}(y_{1}-y_{3})+x_{3}(y_{2}-y{1})]}{(x_{1}-x_{2})(x_{1}-x_{3})(x_{2}-x_{3})}$
一次項系數:
?$\frac{[x_{1}^{2}(y_{2}-y_{3})+x_{2}^{2}(y_{3}-y_{1})+x_{3}^{2}(y_{1}-y{2})]}{(x_{1}-x_{2})(x_{1}-x_{3})(x_{2}-x_{3})}$
常數項:
?$\frac{x_{2}x_{3}y_{1}*(x_{2}-x_{3})+x_{1}x_{3}y_{2}*(x_{3}-x_{1})+x_{1}x_{2}y_{3}*(x_{1}-x_{2})}{(x_{1}-x_{2})(x_{1}-x_{3})(x_{2}-x_{3})}$
好了。就解到這里吧。剩下的東西就交給$DEVC++$來做了。
總結
- 上一篇: document.querySelect
- 下一篇: 必知常识