日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

利用传输矩阵法求解布拉格光栅的透射谱

發(fā)布時間:2023/12/16 编程问答 25 豆豆
生活随笔 收集整理的這篇文章主要介紹了 利用传输矩阵法求解布拉格光栅的透射谱 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

利用傳輸矩陣法求解布拉格光柵的透射譜

采用傳輸矩陣法(TMM)計算具有任意折射率分布光柵結(jié)構(gòu)的透射譜,TMM法描述如下:

  • 能夠計算折射率呈階梯狀分布的波導的反射和透射率,以及波導的傳播常數(shù)。
  • 在單模波導中,計算反射和透射率采用2×2的矩陣表示。
  • 為了表示光柵(多個折射率突變界面),將矩陣乘成級聯(lián)網(wǎng)絡(luò),
  • 能夠計算光柵針對每個波長的透射值和反射值。
  • 1、均勻波導的傳輸矩陣

    ? 傳輸矩陣定義如下:
    [A1B1]=[T11T12T11T12][A2B2]\left[ \begin{matrix} A_1 \\ B_1 \\ \end{matrix}\right] = \left[ \begin{matrix} T_{11} & T_{12} \\ T_{11} & T_{12} \\ \end{matrix}\right] \left[ \begin{matrix} A_2 \\ B_2 \\ \end{matrix}\right] [A1?B1??]=[T11?T11??T12?T12??][A2?B2??]

    傳遞矩陣的概念類似于散射參數(shù)矩陣,波導的均勻截面如圖(a)所示的傳輸矩陣如下:
    Thw=[ejβL00e?jβL]T_{hw}= \left[ \begin{matrix} e^{j\beta L} & 0 \\ 0 & e^{-j\beta L} \\ \end{matrix}\right] Thw?=[ejβL0?0e?jβL?]
    其中,β為場的復傳播常數(shù),包括折射率和傳播損耗:
    β=2πneffλ?iα2\beta = \frac{2\pi n_{eff}}{\lambda}-i\frac{\alpha}{2} β=λ2πneff???i2α?
    計算均勻波導的傳輸矩陣法其MATLAB代碼如下:

    function T_hw=TMM_HomoWG_Matrix(wavelength,l,neff,loss) % Calculate the transfer matrix of a homogeneous waveguide. % Complex propagation constant beta=2*pi*neff./wavelength-1i*loss/2; T_hw=zeros(2,2,length(neff)); T_hw(1,1,:)=exp(1i*beta*l); T_hw(2,2,:)=exp(-1i*beta*l);

    2、折射率呈階梯狀分布的波導

    折射率呈階梯狀分布的波導的傳遞矩陣,如圖b所示,為
    Tis?12=[1/tr/tr/t1/t]=[n1+n22n1n2n1?n22n1n2n1?n22n1n2n1+n22n1n2]T_{is-12}= \left[ \begin{matrix} 1/t & r/t \\ r/t & 1/t \\ \end{matrix}\right]= \left[ \begin{matrix} \frac{n_1+n_2}{2\sqrt{n_1 n_2}} & \frac{n_1-n_2}{2\sqrt{n_1 n_2}} \\ \frac{n_1-n_2}{2\sqrt{n_1 n_2}} & \frac{n_1+n_2}{2\sqrt{n_1 n_2}} \\ \end{matrix}\right] Tis?12?=[1/tr/t?r/t1/t?]=[2n1?n2??n1?+n2??2n1?n2??n1??n2???2n1?n2??n1??n2??2n1?n2??n1?+n2???]
    其中r和t是基于菲涅耳系數(shù)的反射率和透射率。計算折射率呈階梯狀分布的波導界面的傳輸矩陣的MATLAB代碼如下:

    function T_is=TMM_IndexStep_Matrix(n1,n2) % Calculate the transfer matrix for a index step from n1 to n2. T_is=zeros(2,2,length(n1)); a=(n1+n2)./(2*sqrt(n1.*n2)); b=(n1-n2)./(2*sqrt(n1.*n2)); %T_is=[a b; b a]; T_is(1,1,:)=a; T_is(1,2,:)=b; T_is(2,1,:)=b; T_is(2,2,:)=a;

    3、布拉格光柵及反射和透射率

    表述布拉格光柵的級聯(lián)矩陣如下:
    Tp=Ttw?2Tis?21Thw?1Tis?12T_p=T_{tw-2}T_{is-21}T_{hw-1}T_{is-12} Tp?=Ttw?2?Tis?21?Thw?1?Tis?12?
    其中下標1和2表示低和高折射率的區(qū)域。然后構(gòu)造有N個周期的均勻布拉格光柵:
    Tp=(Ttw?2Tis?21Thw?1Tis?12)NT_p=(T_{tw-2}T_{is-21}T_{hw-1}T_{is-12})^N Tp?=(Ttw?2?Tis?21?Thw?1?Tis?12?)N
    考慮了相移均勻布拉格光柵,即帶有兩個布拉格光柵反射器的一級FP腔,傳遞矩陣如下:
    T=[(Tp)N]Thw?2[(Tp)N]Thw?2T=[(T_p)^N]T_{hw-2}[(T_p)^N]T_{hw-2} T=[(Tp?)N]Thw?2?[(Tp?)N]Thw?2?
    計算由波導截面和材料界面組成的波導布拉格光柵腔的傳輸矩陣MATLAB代碼如下:

    function T=TMM_Grating_Matrix(wavelength, Period, NG, n1, n2, loss) % Calculate the total transfer matrix of the gratings l=Period/2; T_hw1=TMM_HomoWG_Matrix(wavelength,l,n1,loss); T_is12=TMM_IndexStep_Matrix(n1,n2); T_hw2=TMM_HomoWG_Matrix(wavelength,l,n2,loss); T_is21=TMM_IndexStep_Matrix(n2,n1); q=length(wavelength); Tp=zeros(2,2,q); T=Tp; for i=1:length(wavelength)Tp(:,:,i)=T_hw2(:,:,i)*T_is21(:,:,i)*T_hw1(:,:,i)*T_is12(:,:,i);T(:,:,i)=Tp(:,:,i)^NG; % 1st order uniform Bragg grating% for an FP cavity, 1st order cavity, insert a high index region, n2.T(:,:,i)=Tp(:,:,i)^NG * (T_hw2(:,:,i))^1 * Tp(:,:,i)^NG * T_hw2(:,:,i); end

    我們將光柵以折射率為n2的部分作為開始和結(jié)束。相移區(qū)域是采用高折射率材料n2來實現(xiàn)的。最后,生成透射T和反射R譜。通過對波長點的一維矩陣進行了計算。計算光柵的反射和透射率MATLAB代碼如下:

    function [R,T]=TMM_Grating_RT(wavelength, Period, NG, n1, n2, loss) %Calculate the R and T versus wavelength M=TMM_Grating_Matrix(wavelength, Period, NG, n1, n2, loss); q=length(wavelength); T=abs(ones(q,1)./squeeze(M(1,1,:))).^2; R=abs(squeeze(M(2,1,:))./squeeze(M(1,1,:))).^2;

    4、光柵物理結(jié)構(gòu)設(shè)計

    接下來將物理結(jié)構(gòu)(波導幾何形狀)與有效折射率聯(lián)系起來。輸出波導部分為500×220 nm的條形波導和氧化物包層組成,其中波導寬度發(fā)生變化構(gòu)成了光柵。

    使用本征模計算光柵段的有效折射率,通過計算了波導與波長和波導寬度之間的有效折射率,然后對其進行參數(shù)化。數(shù)據(jù)可以通過曲線擬合為兩個函數(shù):
    neff?λ(λ)=a0?a1(λ?λ0)?a2(λ?λ0)2neff?w(w)=a0?a1(w?w0)?a2(w?w0)2n_{eff-\lambda}(\lambda)=a_0-a_1(\lambda-\lambda_0)-a_2(\lambda-\lambda_0)^2\\ n_{eff-w}(w)=a_0-a_1(w-w_0)-a_2(w-w_0)^2 neff?λ?(λ)=a0??a1?(λ?λ0?)?a2?(λ?λ0?)2neff?w?(w)=a0??a1?(w?w0?)?a2?(w?w0?)2
    其中,lambda的單位值微米,w為μm中的波導的寬度,neff (w)為給定波導寬度w下的有效折射率相對于其在λ0處的值的偏差。

    定義光柵的物理參數(shù),并畫出頻譜的MATLAB代碼:

    function Grating %This file is used to plot the reflection/transmission spectrum. % Grating Parameters Period=310e-9; % Bragg period NG=200; % Number of grating periods L=NG*Period; % Grating length width0=0.5; % mean waveguide width dwidth=0.01; % +/- waveguide width width1=width0 - dwidth; width2=width0 + dwidth; loss_dBcm=3; % waveguide loss, dB/cm loss=log(10)*loss_dBcm/10*100; % Simulation Parameters: span=30e-9; % Set the wavelength span for the simultion Npoints = 10000; % from MODE calculations switch 1 case 1 % Strip waveguide; 500x220 nm neff_wavelength = @(w) 2.4379 - 1.1193 * (w*1e6-1.554) - 0.0350 * (w*1e6-1.554).^2; % 500x220 oxide strip waveguide dneff_width = @(w) 10.4285*(w-0.5).^3 - 5.2487*(w-0.5).^2 + 1.6142*(w-0.5); end % Find Bragg wavelength using lambda_Bragg = Period * 2neff(lambda_bragg); % Assume neff is for the average waveguide width. f = @(lambda) lambda - Period*2*(neff_wavelength(lambda)+(dneff_width(width2)+dneff_width(width1))/2); wavelength0 = fzero(f,1550e-9); wavelengths=wavelength0 + linspace(-span/2, span/2, Npoints); n1=neff_wavelength(wavelengths)+dneff_width(width1); % low index n2=neff_wavelength(wavelengths)+dneff_width(width2); % high index [R,T]=TMM_Grating_RT(wavelengths, Period, NG, n1, n2, loss);figure; plot (wavelengths*1e6,[R, T],'LineWidth',3); hold all plot ([wavelength0, wavelength0]*1e6, [0,1],'--'); % calculated bragg wavelength xlabel('Wavelength [\mum]') ylabel('Response'); axis tight;

    計算結(jié)果如下圖所示:

    5、Lumerical求解

    通過Lumerial的FDTD求解光柵透射率代碼如下:

    ############################################### # script file: Bragg_FDTD.lsf # # Create and simulate a basic Bragg grating # Copyright 2014 Lumerical Solutions ############################################### # DESIGN PARAMETERS ############################################### thick_Si = 0.22e-6; thick_BOX = 2e-6; width_ridge = 0.5e-6; # Waveguide width Delta_W = 50e-9; # Corrugation width L_pd = 324e-9; # Grating period N_gt = 280; # Number of grating periods L_gt = N_gt*L_pd;# Grating length W_ox = 3e-6; L_ex = 5e-6; # simulation size margins L_total = L_gt+2*L_ex; material_Si = ’Si (Silicon) - Dispersive & Lossless’; material_BOX = ’SiO2 (Glass) - Const’; # Constant index materials lead to more stable simulations # DRAW ############################################### newproject; switchtolayout; materials; # Oxide Substrate addrect; set(’x min,-L_ex); set(’x max,L_gt+L_ex); set(’y’,0e-6); set(’y span’,W_ox); set(’z min,-thick_BOX); set(’z max,-thick_Si/2); set(’material’,material_BOX); set(’name’,’oxide’); # Input Waveguide addrect; set(’x min,-L_ex); set(’x max,0); set(’y’,0); set(’y span’,width_ridge); set(’z’,0); set(’z span’,thick_Si); set(’material’,material_Si); set(’name’,’input_wg’); # Bragg Gratings addrect; set(’x min,0); set(’x max,L_pd/2); set(’y’,0); set(’y span’,width_ridge+Delta_W); set(’z’,0); set(’z span’,thick_Si); set(’material’,material_Si); set(’name’,’grt_big’);addrect; set(’x min,L_pd/2); set(’x max,L_pd); set(’y’,0); set(’y span’,width_ridge-Delta_W); set(’z’,0); set(’z span’,thick_Si); set(’material’,material_Si); set(’name’,’grt_small’);selectpartial(’grt’); addtogroup(’grt_cell’); select(’grt_cell’); redrawoff; for (i=1:N_gt-1) { copy(L_pd); } selectpartial(’grt_cell’); addtogroup(’bragg’); redrawon;# Output WG addrect; set(’x min,L_gt); set(’x max,L_gt+L_ex); set(’y’,0); set(’y span’,width_ridge); set(’z’,0); set(’z span’,thick_Si); set(’material’,material_Si); set(’name’,’output_wg’);# SIMULATION SETUP ############################################### lambda_min = 1.5e-6; lambda_max = 1.6e-6; freq_points = 101; sim_time = 6000e-15; Mesh_level = 2; mesh_override_dx = 40.5e-9; # needs to be an integer multiple of the period mesh_override_dy = 50e-9; mesh_override_dz = 20e-9;# FDTD addfdtd; set(’dimension’,’3D’); set(’simulation time’,sim_time); set(’x min,-L_ex+1e-6); set(’x max,L_gt+L_ex-1e-6); 158 Fundamental building blocks set(’y’, 0e-6); set(’y span’,2e-6); set(’z’,0); set(’z span’,1.8e-6); set(’mesh accuracy’,Mesh_level); set(’x min bc’,’PML’); set(’x max bc’,’PML’); set(’y min bc’,’PML’); set(’y max bc’,’PML’); set(’z min bc’,’PML’); set(’z max bc’,’PML’);#add symmetry planes to reduce the simulation time #set(’y min bc’,’Anti-Symmetric’); set(’force symmetric y mesh’, 1); # Mesh Override if (1){ addmesh; set(’x min,0e-6); set(’x max,L_gt); set(’y’,0); set(’y span’,width_ridge+Delta_W); set(’z’,0); set(’z span’,thick_Si+2*mesh_override_dz); set(’dx’,mesh_override_dx); set(’dy’,mesh_override_dy); set(’dz’,mesh_override_dz); }# MODE Source addmode; set(’injection axis’,’x-axis’); set(’mode selection’,’fundamental mode’); set(’x’,-2e-6); set(’y’,0); set(’y span’,2.5e-6); set(’z’,0); set(’z span’,2e-6); set(’wavelength start’,lambda_min); set(’wavelength stop’,lambda_max);# Time Monitors addtime; set(’name’,’tmonitor_r’); set(’monitor type,’point’); set(’x’,-3e-6); set(’y’,0); set(’z’,0); addtime; set(’name’,’tmonitor_m’); set(’monitor type,’point’); set(’x’,L_gt/2); set(’y’,0); set(’z’,0); addtime; set(’name’,’tmonitor_t’); set(’monitor type,’point’); set(’x’,L_gt+3e-6); set(’y’,0); set(’z’,0);# Frequency Monitors addpower; set(’name’,’t’); set(’monitor type,’2D X-normal’); set(’x’,L_gt+2.5e-6); set(’y’,0); set(’y span’,2.5e-6); set(’z’,0); set(’z span’,2e-6); set(’override global monitor settings’,1); set(’use source limits’,1); set(’use linear wavelength spacing’,1); set(’frequency points’,freq_points); addpower; set(’name’,’r’); set(’monitor type,’2D X-normal’); set(’x’,-2.5e-6); set(’y’,0); set(’y span’,2.5e-6); set(’z’,0); set(’z span’,2e-6); set(’override global monitor settings’,1); set(’use source limits’,1); set(’use linear wavelength spacing’,1); set(’frequency points’,freq_points);#Top-view electric field profile if (0) {addprofile; References 159 set(’name’,’field’); set(’monitor type,’2D Z-normal’); set(’x min,-2e-6); set(’x max,L_gt+2e-6); set(’y’, 0); set(’y span’,1.2e-6); set(’z’, 0); set(’override global monitor settings’,1); set(’use source limits’,1); set(’use linear wavelength spacing’,1); set(’frequency points’,21); }# SAVE AND RUN ############################################### save(’Bragg_FDTD’); run; # Analysis ############################################### transmission_sim=transmission(’t’); reflection_sim=transmission(’r’); wavelength_sim=3e8/getdata(’t’,’f’); plot(wavelength_sim*1e9, 10*log10(transmission_sim),10*log10(abs(reflection_sim)),’wavelength (nm), ’response’); legend(’T’,’R’); matlabsave(’Bragg_FDTD’);

    總結(jié)

    以上是生活随笔為你收集整理的利用传输矩阵法求解布拉格光栅的透射谱的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。