日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 综合教程 >内容正文

综合教程

从稀疏表示到低秩表示(一)

發布時間:2023/12/19 综合教程 31 生活家
生活随笔 收集整理的這篇文章主要介紹了 从稀疏表示到低秩表示(一) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

從稀疏表示到低秩表示(一)

確定研究方向后一直在狂補理論,最近看了一些文章,有了些想法,順便也總結了representation系列的文章,由于我剛接觸,可能會有些不足,愿大家共同指正。

從稀疏表示到低秩表示系列文章包括如下內容:

一、sparse representation

二、NCSR(NonlocallyCentralized Sparse Representation)

三、GHP(GradientHistogram Preservation)

四、Group sparsity

五、Rankdecomposition

一、 sparse representation

1 sparsity

一個線性表示解決的問題如下圖所示:

但是,數據量增大后,這個線性表達的基求解十分復雜,而且很多是冗余的,稀疏表示能解決這個問題:

稀疏直觀理解就是在滿足誤差小和非零項盡可能多,非零項就是解決l0-norm問題,但是這個約束太強,弱化條件就是l1-norm,這是個Convex Optimization,于是有一系列的lp-norm。

關于lp-norm的求解方法如上圖所示,所有的paper用到的方法都在之內。稀疏表達的應用就非常廣泛了,包括去噪,去霧,分割,分類,人臉識別等。

2 why sparse?

關于稀疏的可行原理要追溯到神經科學的突破上,emergence of simple-cell receptive field propertiesby learning a sparse code for nature images.于1996年Cornell大學心理學院的Bruno在Nature上發表的文章。

結論:哺乳動物的初級視覺的簡單細胞的感受野具有空域局部性、方向性和帶通性(在不同尺度下,對不同結構具有選擇性),和小波變換的基函數具有一定的相似性。

而后的概率貝葉斯probabilistic Bayes perspective目標函數相似:

接著是上世紀末的comprehensive sensing解決信號的稀疏等,現在大量用于機器視覺圖像理解和分類上。

無論是去噪還是圖像恢復都是解決如下的問題:

Imagereconstruction: the problem:

詳細的優化過程如下:

Image reconstruction by sparse coding---the basic procedures

3 How sparsityhelps?

An interesting example:

Suppose you are looking for agirlfriend/boyfriend.

– i.e., you are“reconstructing” the desired signal.

• Your objective is that she/he is “白-富-美”/ “高-富-帥”.

– i.e.,you want a “clean” and “perfect”reconstruction.

• However, the candidates are limited.

– i.e.,the dictionary is small.

• Can you findyour ideal girlfriend/boyfriend?

假設你設定某些單一的標準,如handsome、 rich, tall,那么這些相當于basis,針對具體的樣本人選,根據其特征映射這些basis,然后權衡,choose the best candidate.

•Candidate Ais tall; however, he is not handsome.

•Candidate Bis rich; however, he is too fat.

•Candidate Cis handsome; however, he is poor.

• If yousparselyselect one of them, none is ideal foryou

– i.e., asparse representation vectorsuch as [0, 1, 0].

• How about adensesolution: (A+B+C)/3?

– i.e.,a dense representation vector [1,1, 1]/3

– The “reconstructed” boyfriend is acompromiseof “高-富-帥”, and he is fat (i.e., has some noise) at the same time.

Sowhat’s wrong?

– This is becausethedictionaryis toosmall!

• If you can select yourboyfriend/girlfriend from boys/girls all over the world (i.e.,a largeenough dictionary), there is a very high probability (nearly 1) that you will find him/her!– i.e.,a very sparse solution such as [0, …, 1, …, 0]

• In summary, asparsesolution with anover-completedictionaryoften works!

•Sparsityandredundancyare the two sides of the same coin.

4 what is the dictionary?

縱觀所有的重構問題,或多或少多設計dictionarylearning 問題,具體的方法的總結和應用可以參考(圖像分類的字典學習方法概述),全面的介紹各種dictionary learning 貌離神合的相似。

5 Does sparse enough?

It just sparsethe representation and reduce the redundancy, so how about the similarity andstructure between the atoms? What if there is corruption such as light etc.noise, it can’t be robust to various noises.

Such asNonlocalself-similarity

6 Beyond sparse

Limitations of sparse representation

1)sparse representation often learns a dictionary on the basis ofwell-construct and compact dictionary, once the input data has changed, it willcost additional time to construct a new dictionary;

2)If the training data is contaminated (i.e.occlusion,disguise, lighting variations, pixel corruptionetc.) , sparse is notrobust and will be deteriorate;

3)When the data to be analyzed from the same class and sharingcommon (correlated) features(i.e. texture),sparse coding would be still performed for each input signalindependently, it lacksstructureand correlations within and between classes.

So how to find efficientrepresentation ?

1)Structure:

Data enough: relations within class, regularized nearest space

Data small: across class representations, collaborativerepresentation

2) Robust: low-rank decomposition & sparsenoise

最后,推薦一篇低秩原理和應用的綜述:http://media.au.tsinghua.edu.cn/2013_ATCA_Review.pdf

未完,待續,更多請關注:http://blog.csdn.net/tiandijun,歡迎交流!

總結

以上是生活随笔為你收集整理的从稀疏表示到低秩表示(一)的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。