日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 综合教程 >内容正文

综合教程

人脸识别三大经典算法是什么?

發布時間:2023/12/19 综合教程 34 生活家
生活随笔 收集整理的這篇文章主要介紹了 人脸识别三大经典算法是什么? 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

人臉識別三大經典算法

特征臉法(Eigenface)

特征臉技術是近期發展起來的用于人臉或者一般性剛體識別以及其它涉及到人臉處理的一種方法。使用特征臉進行人臉識別的方法首先由Sirovich和Kirby(1987)提出(《Low-dimensional procedure forthe characterization of human faces》),并由Matthew Turk和Alex Pentland用于人臉分類(《Eigenfaces for recognition》)。首先把一批人臉圖像轉換成一個特征向量集,稱為“Eigenfaces”,即“特征臉”,它們是最初訓練圖像集的基本組件。識別的過程是把一副新的圖像投影到特征臉子空間,并通過它的投影點在子空間的位置以及投影線的長度來進行判定和識別。

將圖像變換到另一個空間后,同一個類別的圖像會聚到一起,不同類別的圖像會聚力比較遠,在原像素空間中不同類別的圖像在分布上很難用簡單的線或者面切分,變換到另一個空間,就可以很好的把他們分開了。

Eigenfaces選擇的空間變換方法是PCA(主成分分析),利用PCA得到人臉分布的主要成分,具體實現是對訓練集中所有人臉圖像的協方差矩陣進行本征值分解,得到對應的本征向量,這些本征向量就是“特征臉”。每個特征向量或者特征臉相當于捕捉或者描述人臉之間的一種變化或者特性。這就意味著每個人臉都可以表示為這些特征臉的線性組合。

局部二值模式(Local Binary Patterns,LBP)

局部二值模式(Local binary patterns LBP)是計算機視覺領域里用于分類的視覺算子。LBP,一種用來描述圖像紋理特征的算子,該算子由芬蘭奧盧大學的T.Ojala等人在1996年提出(《A comparative study of texturemeasures with classification based on featured distributions》)。2002年,T.Ojala等人在PAMI上又發表了一篇關于LBP的文章(《Multiresolution gray-scale androtation invariant texture classification with local binary patterns》)。這一文章非常清楚的闡述了多分辨率、灰度尺度不變和旋轉不變、等價模式的改進的LBP特征。LBP的核心思想就是:以中心像素的灰度值作為閾值,與他的領域相比較得到相對應的二進制碼來表示局部紋理特征。

LBP是提取局部特征作為判別依據的。LBP方法顯著的優點是對光照不敏感,但是依然沒有解決姿態和表情的問題。不過相比于特征臉方法,LBP的識別率已經有了很大的提升。

Fisherface算法

線性鑒別分析在降維的同時考慮類別信息,由統計學家Sir R. A.Fisher1936年發明(《The useof multiple measurements in taxonomic problems》)。為了找到一種特征組合方式,達到最大的類間離散度和最小的類內離散度。這個想法很簡單:在低維表示下,相同的類應該緊緊的聚在一起,而不同的類別盡量距離越遠。1997年,Belhumer成功將Fisher判別準則應用于人臉分類,提出了基于線性判別分析的Fisherface方法(《Eigenfaces vs. fisherfaces:Recognition using class specific linear projection》)。

更多相關知識,請訪問:PHP中文網!

以上就是人臉識別三大經典算法是什么?的詳細內容,更多請關注風君子博客其它相關文章!

總結

以上是生活随笔為你收集整理的人脸识别三大经典算法是什么?的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。