日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Pessimistic Error Pruning example of C4.5

發布時間:2023/12/20 编程问答 20 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Pessimistic Error Pruning example of C4.5 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

This example is from 《An Empirical Comparison of Pruning Methods
for Decision Tree Induction》

How to read these node and leaves?
For example:
node 30:
15 are classified as “class1”
2 are mis-classified as “class1”
you can reduce the rest nodes or leaves from above

criterion :
n′(Tt)+SE(n′(Tt))&lt;n′(t)①n&#x27;(T_t)+SE(n&#x27;(Tt))&lt;n&#x27;(t)①n(Tt?)+SE(n(Tt))<n(t)
where
SE(n′(Tt))=n′(Tt)?(N(t)?n′(Tt))N(t)SE(n&#x27;(Tt))=\sqrt{\frac{n&#x27;(T_t)·(N(t)-n&#x27;(T_t))}{N(t)}}SE(n(Tt))=N(t)n(Tt?)?N(t)?n(Tt?)??
Be short :
Errors when unpruned<Errors after pruned

when ① is satisfied ,the current tree remains,
otherwise, it will be pruned.

The principle why above Algorithm always take effect
B(n,p)->N( np,np(1-p) )

Picture Reference
:https://stats.stackexchange.com/questions/213966/why-does-the-continuity-correction-say-the-normal-approximation-to-the-binomia/213995

when in reverse,we set a continuity corretion for binomial distribution:
we use “x+0.5” to make these two curse closer(of course this is not accurate enough),then you can use theory of Normal distribution with x+0.5
of course 0.5 is not rigorous,here is just approximation

Why the standard error occur in the criterion?
n′(Tt)+SE(n′(Tt))&lt;n′(t)n&#x27;(T_t)+SE(n&#x27;(Tt))&lt;n&#x27;(t)n(Tt?)+SE(n(Tt))<n(t)
&lt;=&gt;n′(Tt)+n′(Tt)?(N(t)?n′(Tt))N(t)&lt;n′(t)&lt;=&gt;n&#x27;(T_t)+\sqrt{\frac{n&#x27;(T_t)·(N(t)-n&#x27;(T_t))}{N(t)}}&lt;n&#x27;(t)<=>n(Tt?)+N(t)n(Tt?)?N(t)?n(Tt?)??<n(t)
Let’s see an example:
Y=X1+X2+X3+X4Y=X_1+X_2+X_3+X_4Y=X1?+X2?+X3?+X4?
XiX_iXi?will fluctuate and Y will fluctuate(I mean they are all variables,Not Constant).
then ,when does Y reach maximum?
Now if we have 4 values Y ever have produced.
1,2,1,1 ②
then average Y?=14(1+2+1+1)=1.25\frac{1}{4}(1+2+1+1)=1.2541?(1+2+1+1)=1.25
Standard Deviation=14{(1?1.25)2+(2?1.25)2+(1?1.25)2+(1?1.25)2}\sqrt{\frac{1}{4}\{(1-1.25)^2+(2-1.25)^2+(1-1.25)^2+(1-1.25)^2\}}41?{(1?1.25)2+(2?1.25)2+(1?1.25)2+(1?1.25)2}?=0.43
so when
Y?+Standard Deviation=1.25+0.43=1.68≈2.0

Conclusion 1:
All above means that when Y?+Standard Deviation,we’ll get a value nearest to the maximum in②
------------------------------------------
Let’s come back to Errors we focus just now:
regard Y as the total number of Errors of un-pruned Tree:
Assume(Such Assumption is of course Not rigorous~!):
Y?=n′(Tt)n&#x27;(T_t)n(Tt?)
XiX_iXi?:Error number of the ithi_{th}ith?leaf
Standard Deviation:SE(n′(Tt))SE(n&#x27;(Tt))SE(n(Tt))

just like the conclusion 1:
n′(Tt)+SE(n′(Tt))n&#x27;(T_t)+SE(n&#x27;(Tt))n(Tt?)+SE(n(Tt)) means that:
we’ll get a value nearest to the maximum number among possible values of “errors of un-pruned tree”.
Attention please that we assume “errors of un-pruned tree” as a variable,Not constant,
which is used to get the " maximum possible error numbers".
The reason why we call it"pessimistic" is just from SE(n′(Tt))SE(n&#x27;(Tt))SE(n(Tt))
this item means:“pessimistic Error counts”

Note:
There’s a complaint from part2.2.5 of《An Empirical Comparison of Pruning Methods for Decision Tree Induction》for PEP that:
"The statistical justification of this method is somewhat dubious"?
So the principle of PEP is Not rigorous.


After Principle ,Computation comes:
For pruned-tree,Error counts:n′(t)=15+0.5n&#x27;(t)=15+0.5n(t)=15+0.5
For un-pruned-tree,Error counts:
n′(Tt)+SE(n′(Tt))n&#x27;(T_t)+SE(n&#x27;(Tt))n(Tt?)+SE(n(Tt))
n′(Tt)=2(node30)+0(node31)+6(node28)+2(node29)+continuationErrors=10+4(node30,node31,node28,node29)?0.5=12n&#x27;(T_t)=2(node 30)+0(node 31)+6(node 28)+2(node 29)+continuation\ Errors=10+4(node 30,node31,node28,node29)·0.5=12n(Tt?)=2(node30)+0(node31)+6(node28)+2(node29)+continuation?Errors=10+4node30,node31,node28,node29?0.5=12
pessmisticerrorcounts=SE(n′(Tt))=12?(35?12)35=2.8pessmistic\ error \ counts=SE(n&#x27;(Tt))=\sqrt{\frac{12·(35-12)}{35}}=2.8pessmistic?error?counts=SE(n(Tt))=3512?35?12??=2.8
then
n′(Tt)+SE(n′(Tt))=12+2.8=14.8&lt;15.5=n′(t)n&#x27;(T_t)+SE(n&#x27;(Tt))=12+2.8=14.8&lt;15.5=n&#x27;(t)n(Tt?)+SE(n(Tt))=12+2.8=14.8<15.5=n(t)
So,this tree should be kept and Not pruned

tools for print overline of texts:
https://fsymbols.com/generators/overline/

總結

以上是生活随笔為你收集整理的Pessimistic Error Pruning example of C4.5的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。