日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

pickel加速caffe读图

發布時間:2023/12/20 编程问答 27 豆豆
生活随笔 收集整理的這篇文章主要介紹了 pickel加速caffe读图 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

64*64*3小圖(12KB),batchSize=128,訓練樣本100萬,

全部load進來內存受不了,load一次需要大半天

訓練時讀入一個batch,ali云服務器上每個batch讀入時間1.9~3.2s不等,迭代一次2s多

由于有多個label不能用caffe自帶的lmdb轉了,輸入是自己寫的python層,試著用pickel

import os, sys import cv2 import numpy as np import numpy.random as npr import cPickle as pickle wk_dir = "/Users/xxx/wkspace/caffe_space/detection/caffe/data/1103reg64/" InputSize = int(sys.argv[1]) BatchSize = int(sys.argv[2]) trainfile = "train.txt" testfile = "test.txt" print "gen imdb with for net input:", InputSize, "batchSize:", BatchSizewith open(wk_dir+trainfile, 'r') as f:trainlines = f.readlines() with open(wk_dir+testfile, 'r') as f:testlines = f.readlines() ####################################### # we seperate train data by batchsize # ####################################### to_dir = wk_dir + "/trainIMDB/" if not os.path.isdir(to_dir):os.makedirs(to_dir)train_list = [] cur_ = 0 sum_ = len(trainlines) for line in trainlines:cur_ += 1words = line.split()image_file_name = words[0]im = cv2.imread(wk_dir + image_file_name)h,w,ch = im.shapeif h!=InputSize or w!=InputSize:im = cv2.resize(im,(InputSize,InputSize))roi = [float(words[2]),float(words[3]),float(words[4]),float(words[5])]train_list.append([im, roi])if (cur_ % BatchSize == 0):print "write batch:" , cur_/BatchSizefid = open(to_dir +'train'+ str(BatchSize) + '_'+str(cur_/BatchSize),'w')pickle.dump(train_list, fid)fid.close()train_list[:] = []print len(train_list), "train data generated\n"########################### # tests # ########################### to_dir = wk_dir + "/testIMDB/" if not os.path.isdir(to_dir):os.makedirs(to_dir) test_list = [] cur_ = 0 sum_ = len(testlines) for line in testlines:cur_ += 1words = line.split()image_file_name = words[0]im = cv2.imread(wk_dir + image_file_name)h,w,ch = im.shapeif h!=InputSize or w!=InputSize:im = cv2.resize(im,(InputSize,InputSize))roi = [float(words[2]),float(words[3]),float(words[4]),float(words[5])]test_list.append([im, roi])if (cur_ % BatchSize == 0):print "write batch:", cur_ / BatchSizefid = open(to_dir +'test'+ str(BatchSize) + '_'+str(cur_/BatchSize), 'w')pickle.dump(test_list, fid)fid.close()test_list[:] = [] print len(test_list), "test data generated\n"

每個batch生成4.8MB的塊(約比128張原圖占3倍磁盤空間):

訓練時讀入,ali云訓練每個batch時間變為0.2s,可加速10倍

?

mac上是ssd硬盤,本來讀圖就很快,一個batch 0.05s, 改成pickel后反而變慢了,load一個batch需要0.2s。

?

轉載于:https://www.cnblogs.com/zhengmeisong/p/9903539.html

總結

以上是生活随笔為你收集整理的pickel加速caffe读图的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。