日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

pearsonr(x,y)、corr()、corrcoef(u1) 相关系数计算

發(fā)布時(shí)間:2023/12/20 编程问答 36 豆豆
生活随笔 收集整理的這篇文章主要介紹了 pearsonr(x,y)、corr()、corrcoef(u1) 相关系数计算 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

函數(shù):pearsonr(x,y)

功能:
計(jì)算特征與目標(biāo)變量之間的相關(guān)度

參數(shù)說(shuō)明:
1)輸入:x為特征,y為目標(biāo)變量.
2)輸出:r: 相關(guān)系數(shù) [-1,1]之間,p-value: p值。
注: p值越小,表示相關(guān)系數(shù)越顯著,一般p值在500個(gè)樣本以上時(shí)有較高的可靠性。

pearson相關(guān)系數(shù)的計(jì)算公式為:

cov(X,Y)表示的是協(xié)方差
var(x)和var(y)表示的是方差

python實(shí)現(xiàn)

import numpy as np from scipy.stats import pearsonr import random np.random.seed(0) size=300 x=np.random.normal(0,1,size) print "Lower noise",pearsonr(x,x+np.random.normal(0,1,size)) print "Higher noise",pearsonr(x,x+np.random.normal(0,10,size))

輸出:

Lower noise (0.71824836862138408, 7.3240173129983507e-49) Higher noise (0.057964292079338155, 0.31700993885324752)

用pandas計(jì)算相關(guān)系數(shù)

corr()求解變量相關(guān)系數(shù)

df.head()Guba XQ BCI Count Value 0 0.021 0.098 0.175 0.077 0.057 1 0.031 0.097 0.192 0.087 0.069 2 0.018 0.101 0.193 0.075 0.069 3 0.017 0.112 0.203 0.077 0.063 4 0.042 0.158 0.222 0.335 0.567#1.pearson相關(guān)系數(shù) df.corr()Guba XQ BCI Count Value Guba 1.000000 0.175604 -0.014611 0.200896 0.256166 XQ 0.175604 1.000000 -0.390358 0.654250 0.482809 BCI -0.014611 -0.390358 1.000000 -0.259319 -0.156440 Count 0.200896 0.654250 -0.259319 1.000000 0.832961 Value 0.256166 0.482809 -0.156440 0.832961 1.000000#2.Kendall Tau相關(guān)系數(shù) df.corr('kendall')Guba XQ BCI Count Value Guba 1.000000 0.153904 -0.012438 0.133122 0.090707 XQ 0.153904 1.000000 -0.244304 0.374908 0.255377 BCI -0.012438 -0.244304 1.000000 -0.157442 -0.091950 Count 0.133122 0.374908 -0.157442 1.000000 0.720916 Value 0.090707 0.255377 -0.091950 0.720916 1.000000#3.spearman秩相關(guān) df.corr('spearman')Guba XQ BCI Count Value Guba 1.000000 0.219124 -0.017204 0.189752 0.143163 XQ 0.219124 1.000000 -0.358981 0.563938 0.427756 BCI -0.017204 -0.358981 1.000000 -0.241880 -0.140010 Count 0.189752 0.563938 -0.241880 1.000000 0.877732 Value 0.143163 0.427756 -0.140010 0.877732 1.000000#4.顯著性檢驗(yàn) import scipy.stats as stats #輸出結(jié)果第一個(gè)值為pearsonr相關(guān)系數(shù), #第二個(gè)為p-value,所以這里Guba列和Value值是顯著相關(guān)的 stats.pearsonr(df['Guba'],df['Value']) (0.256165703418037, 8.10519823509109e-07)

計(jì)算兩列數(shù)據(jù)相關(guān)系數(shù)

import pandas as pd import pylab as plt #每小時(shí)的陣風(fēng)風(fēng)速平均值 all_gust_spd_mean_list = [8.21529411764706, 7.872941176470587, 7.829411764705882, 8.354117647058825, 9.025882352941174, 9.384523809523811, 9.57294117647059, 9.274117647058821, 9.050588235294118, 9.314117647058827, 8.924705882352939, 9.25176470588235, 8.978823529411764, 8.39176470588235, 7.715294117647061, 7.477647058823529, 7.272941176470586, 7.38470588235294, 7.396470588235295, 7.97261904761905, 7.716666666666666, 7.7809523809523835, 7.816666666666668, 7.897590361445783, 8.200000000000001, 8.04761904761905, 7.474999999999999, 9.855952380952383, 11.120000000000001, 10.979761904761906, 10.922619047619051, 10.841176470588234, 9.31566265060241, 8.867058823529415, 9.068235294117642, 8.774698795180722, 8.629411764705884, 8.292941176470586, 7.640000000000007, 7.422352941176469, 7.464705882352944, 8.210588235294113, 8.558823529411763, 8.93095238095238, 9.001176470588234, 8.538095238095238, 8.965882352941172, 9.855294117647057, 8.318918918918921, 9.217647058823525, 8.86470588235294, 8.840000000000002, 9.44235294117647, 9.352380952380953, 9.307058823529408, 9.64047619047619, 9.408333333333333, 9.585882352941175, 8.901190476190477, 7.698823529411764, 7.988235294117645, 9.091764705882353, 9.294117647058819, 8.996470588235297, 9.63764705882353, 9.091764705882353, 8.937647058823533, 8.838823529411764, 8.637647058823534, 8.46, 8.374117647058824, 8.24117647058823, 8.245238095238093, 8.365882352941174, 8.50235294117647, 8.291764705882352, 8.088235294117647, 7.889411764705883, 7.594117647058826, 7.216470588235293, 7.097647058823533, 7.305882352941181, 7.489411764705882, 6.815294117647058, 7.971428571428569, 7.424705882352936, 6.910588235294117, 6.071764705882354, 7.44117647058823, 7.667857142857143, 7.881176470588237, 7.929411764705881, 8.12142857142857, 8.822352941176472, 9.083529411764703, 9.028235294117646, 9.310714285714285, 9.035294117647057, 8.450588235294116, 8.414285714285713, 7.311764705882355, 6.840000000000001, 7.238095238095239, 6.641176470588236, 6.8047619047619055, 6.58705882352941, 6.826190476190474, 6.568235294117643, 7.060000000000001, 7.686904761904761, 8.348235294117643, 8.503529411764701, 8.287058823529414, 8.354117647058823, 7.624705882352941, 7.286904761904765, 7.361176470588235, 7.477647058823531, 7.343529411764706]#每小時(shí)的陣風(fēng)風(fēng)向標(biāo)準(zhǔn)差 all_gust_agl_dev_list = [0.7507438242046189, 0.768823513771462, 0.849877567310481, 0.8413581558472801, 0.8571319461950748, 0.8665002025305942, 0.9053739533298005, 0.8866979720735791, 0.8045677876888446, 0.873463882661469, 0.832383480871403, 0.778659970340069, 0.7357031045047981, 0.7974723911258534, 0.8039727543149432, 0.8709723763624072, 0.8727745464337923, 0.7896422160341138, 0.8165093346129041, 0.8821296270775546, 0.9193591477905156, 0.8546566314487358, 0.8595040204296921, 0.8075641299052398, 0.7996745617071098, 0.7930869411601498, 0.7578880032016914, 0.9107571156507569, 0.8461201382346486, 0.7553646348127085, 0.8510861123303187, 0.7282631202385544, 0.8588017730198183, 0.7923449370076744, 0.8265083209111689, 0.9599970229643688, 0.8195276021290412, 0.7882592259148272, 0.8036464793287409, 0.8237184691421926, 0.8846862360656914, 0.8136869244513337, 0.8516383375155133, 0.7760301715652644, 0.8644231334629017, 0.831330440569484, 0.8061342111854616, 0.7345896810176235, 1.205089147978776, 0.8266315966774649, 0.8137345300107962, 0.8186966603954983, 0.7836182115343135, 0.8406438908681332, 0.7717723331806998, 0.7932664155269176, 0.7266183593077442, 0.719063143819583, 0.8846434855533486, 0.817552510948495, 0.7571575934024827, 0.865326265251608, 0.9099784335052563, 0.8591794583996128, 0.9295389095340467, 0.8787300860744375, 0.8724277968300532, 0.95284132003256, 0.9288772059881606, 0.8690944948691984, 0.8327213470469693, 0.8339075062700629, 0.886835675339985, 0.8439137877550847, 0.7985495396895048, 0.8406267016063169, 0.8477871130878305, 0.8844025576348077, 0.9186363354492758, 0.8888539157167654, 0.9079462071375304, 0.8699806402308554, 0.8531937701209343, 0.8833108936555343, 0.9317958602705915, 0.9393618445471649, 0.9556065912926689, 0.967220118643412, 0.8882194173154115, 0.9361538853249073, 0.7872261833965604, 0.8608377368219552, 0.8787718518619395, 0.8169189082396561, 0.7965901553530427, 0.8838665737610132, 0.8844338861256802, 0.9008484784943429, 0.8612318707072047, 0.8623792153658019, 1.0033494995180463, 0.9901213381586231, 0.8780115045650467, 0.9172682690843976, 0.9653905755824115, 0.9199829176728873, 0.9180048223906779, 0.9172043382441968, 0.9267783259554074, 0.9231225672912022, 0.7945054721199195, 0.8655558517080688, 0.8306327906597787, 0.8457559701865576, 0.8038459124570336, 0.8519646989317945, 0.7735358658599594, 0.8612134954656397, 0.8879135146161856]g_s_m = pd.Series(all_gust_spd_mean_list) #利用Series將列表轉(zhuǎn)換成新的、pandas可處理的數(shù)據(jù) g_a_d = pd.Series(all_gust_agl_dev_list)corr_gust = round(g_s_m.corr(g_a_d), 4) #計(jì)算標(biāo)準(zhǔn)差,round(a, 4)是保留a的前四位小數(shù)print('corr_gust :', corr_gust)#最后畫(huà)一下兩列表散點(diǎn)圖,直觀感受下,結(jié)合相關(guān)系數(shù)揣摩揣摩 plt.scatter(all_gust_spd_mean_list, all_gust_agl_dev_list) plt.title('corr_gust :' + str(corr_gust), fontproperties='SimHei') #給圖寫(xiě)上title plt.show()

根據(jù)以上程序,得到結(jié)果:

corr_gust : -0.3481

計(jì)算矩陣數(shù)據(jù)相關(guān)系數(shù)矩陣

import pandas as pd import numpy as npif __name__ == '__main__':unstrtf_lst = [[2.136, 1.778, 1.746, 2.565, 1.873, 2.413, 1.813, 1.72, 1.932, 1.987, 2.035, 2.178, 2.05, 2.016, 1.645, 1.756, 1.886, 2.106, 2.138, 1.914, 1.984, 1.906, 1.871, 1.939, 1.81, 1.93, 1.898, 1.802, 2.008, 1.724, 1.823, 1.636, 1.774, 2.055, 1.934, 1.629, 2.519, 2.093, 2.004, 1.793, 1.564, 1.962, 2.176, 1.846, 1.816, 2.018, 1.708, 2.465, 1.899, 1.523, 1.41, 2.102, 2.065, 2.402, 2.091, 1.867, 1.77, 1.466, 2.029, 1.659, 1.626, 1.977, 1.837, 2.13, 2.241, 2.184, 2.345, 1.833, 2.113, 1.764, 1.859, 1.868, 1.835, 1.906, 2.237, 1.846, 1.871, 1.769, 1.928, 1.831, 1.875, 2.039, 2.24, 1.835, 1.851], [2.171, 1.831, 1.714, 2.507, 1.793, 2.526, 1.829, 1.705, 1.954, 2.017, 2.022, 2.16, 2.059, 1.966, 1.661, 1.752, 1.884, 2.203, 2.182, 1.97, 2.003, 1.875, 1.852, 1.884, 1.774, 1.916, 1.936, 1.809, 1.926, 1.717, 1.841, 1.59, 1.781, 2.016, 1.898, 1.657, 2.458, 2.134, 2.032, 1.785, 1.575, 1.959, 2.11, 1.854, 1.826, 1.992, 1.706, 2.419, 1.854, 1.514, 1.37, 2.084, 2.024, 2.398, 1.955, 1.859, 1.759, 1.441, 2.059, 1.653, 1.583, 1.987, 1.84, 2.106, 2.262, 2.13, 2.371, 1.776, 2.117, 1.733, 1.814, 1.839, 1.822, 1.883, 2.23, 1.803, 1.894, 1.783, 1.911, 1.813, 1.85, 2.004, 2.191, 1.823, 1.809], [2.157, 1.873, 1.802, 2.761, 1.733, 2.506, 1.842, 1.765, 1.938, 2.058, 1.932, 2.196, 2.004, 2.126, 1.664, 1.698, 1.899, 2.073, 2.117, 2.083, 1.972, 1.969, 1.865, 1.937, 1.752, 1.939, 1.927, 1.804, 2.07, 1.725, 1.846, 1.5, 1.804, 2.1, 1.932, 1.773, 2.431, 2.088, 2.08, 1.812, 1.592, 1.953, 2.044, 2.019, 1.846, 2.061, 1.771, 2.254, 1.891, 1.536, 1.356, 1.952, 2.222, 2.427, 2.015, 1.873, 1.79, 1.384, 1.981, 1.665, 1.815, 2.006, 1.869, 2.102, 2.249, 2.27, 2.296, 1.814, 2.099, 1.702, 1.688, 1.89, 1.82, 1.927, 2.162, 1.825, 1.998, 1.811, 2.0, 1.842, 1.793, 2.115, 2.301, 1.789, 1.826], [2.127, 1.744, 1.747, 2.548, 1.939, 2.296, 1.808, 1.71, 1.901, 1.906, 2.074, 2.167, 2.113, 2.044, 1.632, 1.821, 1.94, 2.076, 2.114, 1.837, 1.978, 1.904, 1.872, 1.98, 1.886, 1.923, 1.875, 1.799, 1.992, 1.704, 1.812, 1.715, 1.756, 2.061, 1.94, 1.554, 2.592, 2.065, 1.983, 1.802, 1.57, 1.955, 2.215, 1.765, 1.796, 2.006, 1.662, 2.573, 1.915, 1.543, 1.439, 2.16, 2.012, 2.42, 2.268, 1.886, 1.767, 1.527, 2.073, 1.65, 1.567, 2.016, 1.819, 2.153, 2.225, 2.237, 2.327, 1.877, 2.115, 1.804, 1.939, 1.867, 1.84, 1.905, 2.302, 1.883, 1.798, 1.725, 1.893, 1.846, 1.916, 2.025, 2.268, 1.867, 1.877], [2.089, 1.664, 1.72, 2.441, 2.031, 2.321, 1.773, 1.702, 1.935, 1.968, 2.119, 2.191, 2.023, 1.925, 1.621, 1.75, 1.822, 2.074, 2.139, 1.764, 1.982, 1.873, 1.895, 1.955, 1.829, 1.945, 1.853, 1.794, 2.046, 1.75, 1.793, 1.741, 1.752, 2.042, 1.965, 1.532, 2.598, 2.086, 1.923, 1.771, 1.517, 1.98, 2.338, 1.743, 1.794, 2.014, 1.693, 2.618, 1.938, 1.5, 1.476, 2.216, 2.003, 2.361, 2.13, 1.85, 1.764, 1.513, 2.001, 1.669, 1.538, 1.897, 1.819, 2.163, 2.226, 2.099, 2.386, 1.865, 2.121, 1.818, 2.0, 1.876, 1.858, 1.908, 2.254, 1.874, 1.791, 1.759, 1.908, 1.822, 1.944, 2.012, 2.201, 1.863, 1.892]]column_lst = ['whole_year', 'spring', 'summer', 'autumn', 'winter']# 計(jì)算列表兩兩間的相關(guān)系數(shù)data_dict = {} # 創(chuàng)建數(shù)據(jù)字典,為生成Dataframe做準(zhǔn)備for col, gf_lst in zip(column_lst, unstrtf_lst):data_dict[col] = gf_lstunstrtf_df = pd.DataFrame(data_dict)cor1 = unstrtf_df.corr() # 計(jì)算相關(guān)系數(shù),得到一個(gè)矩陣print(cor1)print(unstrtf_df.columns.tolist())

結(jié)果如下:

whole_year spring summer autumn winter whole_year 1.000000 0.986011 0.943254 0.980358 0.965415 spring 0.986011 1.000000 0.944394 0.945710 0.930887 summer 0.943254 0.944394 1.000000 0.876008 0.833568 autumn 0.980358 0.945710 0.876008 1.000000 0.977426 winter 0.965415 0.930887 0.833568 0.977426 1.000000

用numpy計(jì)算相關(guān)系數(shù)

import numpy as np # 這里u1是一個(gè)矩陣,可以自己構(gòu)造,也可以來(lái)自dataframe類(lèi)型:比如u1=a_df.values np.corrcoef(u1) # 計(jì)算矩陣所有行的相關(guān)系數(shù) np.corrcoef(u1.T) # 計(jì)算矩陣所有列的相關(guān)系數(shù) np.around(np.corrcoef(u1), decimals=3) # 這里是將矩陣結(jié)果保留3位小數(shù)

總結(jié)

以上是生活随笔為你收集整理的pearsonr(x,y)、corr()、corrcoef(u1) 相关系数计算的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 日韩中文字幕av在线 | 91麻豆精品视频 | www国产www| 美少妇av | 日韩啪啪网| 老版k8经典电影 | 成人av高清在线观看 | 美女黄色小视频 | 国产福利资源在线 | 一女二男一黄一片 | 国产农村乱对白刺激视频 | 成人动漫在线播放 | 日韩美女视频一区二区 | 国偷自产av一区二区三区 | 国产视频精品视频 | 欧美成人激情视频 | 欧美一区二区日韩 | 亚洲自拍电影 | 国产精品变态另类虐交 | 欧美浓毛大泬视频 | 美女被捅个不停 | 国产又粗又黄又猛 | 国产午夜伦鲁鲁 | 九草在线观看 | 欧美成人国产精品高潮 | 日本一本在线 | 玖玖视频网 | 凹凸日日摸日日碰夜夜 | 艳妇乳肉豪妇荡乳 | 麻豆一区在线 | 伊人一区二区三区 | 亚洲成人网页 | feel性丰满白嫩嫩hd | 一级片aaa | 超碰在线人 | 视频精品一区二区 | 欧美人一级淫片a免费播放 西方av在线 | 国产欧美日 | 久久精品无码Av中文字幕 | 亚洲一区二区人妻 | 深夜福利视频在线 | 六月激情网 | 国产亚洲成av人片在线观看桃 | 光棍天堂av| 黄色男女网站 | 91九色国产视频 | 国产成人精品一区二区三区视频 | 亚洲精品视频免费看 | 潘金莲一级淫片免费放动漫 | 九月婷婷 | 噼里啪啦动漫高清在线观看 | 久久亚洲视频 | 有奶水的迷人少妇 | 日本高清久久 | 亚洲精品视频导航 | 黄免费在线观看 | 四虎影视网 | 亚洲成人精品av | 不卡视频在线观看 | 欧美性受xxxx白人性爽 | 欧美 日韩 国产 在线 | 免费看黄色的视频 | 免费观看视频一区 | 欧美人与动牲交xxxxbbbb | 99这里只有精品视频 | 四虎影院国产精品 | 日韩福利在线观看 | 亚洲视频自拍偷拍 | 爱爱一区二区三区 | 91精品久久人妻一区二区夜夜夜 | 九九香蕉视频 | 加勒比精品在线 | 国产+高潮+白浆+无码 | 大又大粗又爽又黄少妇毛片 | 亚洲码国产精品高潮在线 | 精品成人一区 | 影音先锋成人在线 | 成人区精品一区二区婷婷 | 亚洲成人无码久久 | 成人性视频sm. | 91久久精品日日躁夜夜躁国产 | 黄色一级免费视频 | 欧美视频不卡 | 亚欧美日韩 | 日韩美女视频网站 | 天堂二区 | 亚洲欧美色图在线 | 欧美视频久久久 | 怡春院欧美 | 久久久久99精品成人片 | 欧美一区二区三区四区在线 | 国产成人精品一区二区在线小狼 | av黄色小说 | 爽天天天天天天天 | 亚洲私人影院 | 东北熟女一区二区三区 | 国产乱叫456在线 | 免费无码不卡视频在线观看 | 亚洲欧美精品久久 |