日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

论文中sota_CVPR 2020最佳学生论文分享回顾:通过二叉空间分割(BSP)生成紧凑3D网格...

發布時間:2023/12/20 编程问答 33 豆豆
生活随笔 收集整理的這篇文章主要介紹了 论文中sota_CVPR 2020最佳学生论文分享回顾:通过二叉空间分割(BSP)生成紧凑3D网格... 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

在近日舉行的 CVPR 2020 大會上,最佳論文、最佳學生論文等獎項悉數公布。加拿大西蒙弗雷澤大學陳之欽(Zhiqin Chen )等人的「BSP-Net」相關研究獲得了最佳學生論文獎,他們的論文題目是《BSP-Net: Generating Compact Meshes via Binary Space Partitioning》。在最新一期的機器之心 CVPR 2020 線上論文分享中,西蒙弗雷澤大學 (SFU) 博士一年級學生陳之欽以第一作者的身份向我們分享了這篇最佳學生論文。

機器之心發布,機器之心編輯部。

https://v.qq.com/x/page/o310447s8o0.html?v.qq.com

在這項研究中,西蒙弗雷澤大學和谷歌研究院的三位研究者提出了一種無監督方法,能夠通過 convex decomposition 生成緊湊的結構化多邊形網格。

  • 論文地址:https://arxiv.org/pdf/1911.06971.pdf
  • 項目地址:https://github.com/czq142857/BSP-NET-original

多邊形網格在數字 3D 領域無處不在,但它們在深度學習革命中僅扮演了配角。在學習形狀生成模型這一方向上,領先方法要依賴于隱函數,并且只有經過昂貴的 iso-surfacing 處理過程才能生成網格。為了克服這些困難,該研究在 Binary Space Partitioning(BSP,計算機圖形學中的經典空間數據結構)的啟發下探討了促進 3D 學習的方法。

BSP 的核心是對空間進行遞歸細分以獲得 convex set。利用這一屬性,研究者設計了 BSP-Net,一個通過 convex decomposition 來學習 3D 形狀表征的網絡。重要的是,BSPNet 是無監督的,因為訓練過程中不需要 convex shape decomposition。

該網絡經過訓練,利用一組 convex 來重建一個形狀,這些 convex 來自構建在一組平面上的 BSPtree。由 BSPNet 推斷出的 convex 可被輕松提取以形成多邊形網格,而無需進行 iso-surfacing 處理。生成的網格是緊湊的(即 low-poly),非常適合表示尖銳的幾何形狀。此外,它們一定是水密的網格,并且可以輕松地被參數化。該研究還表明,BSP-Net 的重構質量可以媲美 SOTA 方法,且它使用的 primitive 要少得多。

方法詳解

該研究試圖找到一種既能訓練又可解釋的幾何圖形深度表征。研究者們通過設計一種能提供可微分 BSP-tree 表征的網絡架構來完成這個任務。由于這種表征通過隱函數編碼幾何圖形,所以它們很容易訓練。此外,由于這些表征的輸出是 convex polytope 的集合,所以它們是可解釋的。

研究者提出了 BSP-Net。該網絡學習一個隱式場:給定 n 個點的坐標和一個形狀特征向量作為輸入,網絡輸出一些能夠指示這些點是在形狀內部還是外部的值。這個隱函數的構造如圖 2 所示,由三個步驟組成:1)平面方程的集合意味著空間的 p 個二叉分割的集合,參見圖 2(上);2)一個算子 T_{p×c}將這些分割結果分組,以創建一個包含 c 個 convex shape primitive/part 的集合;3)最后,合并這些 part 集合以生成輸出形狀的隱式場。

下圖 3 顯示了與以上三個步驟對應的網絡架構:

1)超平面提取。給定一個特征向量 f,應用一個多層感知機

獲取平面參數 P_{px4},其中 p 是平面的數量,即

對于任意點

,乘積

是該點到每個平面的符號距離的向量。如果點 X 在內部,則第 i 個距離為負值,反之為正值。

2)超平面分組。為了將超平面分為若干組幾何 primitive,研究者利用了二進制矩陣 T_{p×c}。通過一個最大池化操作,他們聚合了輸入平面,以形成一組 c 個 convex primitive 組成的集合。

注意,在訓練期間,梯度只能通過一個最大(max)的平面。因此,為了簡化訓練,研究者利用了一個用求和代替 max 的版本。

3)形狀組裝。該層通過最小池化對 convex 進行分組,以創建一個可能非凸的輸出形狀:

注意,此處用 C^+ 是有目的的。之所以避免使用 C^*,是因為在 TensorFlow 1 中的算子實現內存不夠高效。

為了促進學習,研究者通過使用(加權)求和來將梯度分配給所有的 convex:

實驗結果與評估

在一個 2D 形狀合成數據集上,研究者分析了 BSP-Net 的行為。此外,他們還將 BSP-Net 與其他 SOTA 方法進行了比較,以評估該研究中的自編碼器以及單視圖重建效果。

2D 形狀自編碼

為了說明 BSP-Net 效果如何,研究者構建了一個 2D 合成數據集。他們在幾個 64 × 64 的圖像上分別放置了一個菱形、一個十字以及一個空心菱形,如圖 4(a)所示。這三種形狀是有順序的,菱形總是在左邊,空心菱形總是在右邊,這是為了模仿 ShapeNet 等形狀數據集的結構。

在第一階段的訓練之后,該研究的網絡已經實現了良好的近似 S^+ 重建,但是,通過查看 S^?,研究者發現他們推斷的輸出還存在一些缺點。在第二階段進行了調整之后,該研究的網絡實現了近乎完美的重構。最后,使用 overlap 損失顯著提高了表示的緊湊性,減少了每部分的 convex 數量,如圖 4(d)所示。

圖 4:在 2D 合成數據集上的評估——自編碼器是在合成的 2D 數據集上訓練的。研究者展示了自編碼結果,并用紅色圈出了第一階段中存在的錯誤,這些錯誤在第二階段已改正。此外,研究者還展示了使用 overlap 損失的效果。注意,在可視化時,使用了不同的顏色來表示不同的 convex。

3D 形狀自編碼

對于 3D 形狀的自編碼,研究者將 BSP-Net 與其他一些 shape decomposition 網絡進行了比較,包括 Volumetric Primitives(VP)、Super Quadrics(SQ)以及 Branched Auto Encoders(BAE)。

表 2 給出了每種類別的分割結果。

BSP-Net 在保證高分割準確度的同時,也能顯著提高重構質量,如表 1 和圖 7 所示。

表 1:各個模型的表面重構質量和 3D 形狀自編碼結果對比。

圖 7:分割和重建 / 定性研究。

單視圖重建(SVR)

在單視圖重建任務上,研究者將 BSP-Net 與 AtlasNet、IMNET 和 OccNet 做了比較,表 3 和表 4 中給出了定量分析結果,在圖 8 中給出了定性結果。

表 3:單視圖重建,與 SOTA 方法的比較。

表 4:low-poly 分析——單視圖重建中的數據集平均指標。

圖 8:單視圖 3D 重建,該模型與 AtlasNet [16]、IM-NET [5]及 OccNet [28]的比較結果。

總結

以上是生活随笔為你收集整理的论文中sota_CVPR 2020最佳学生论文分享回顾:通过二叉空间分割(BSP)生成紧凑3D网格...的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。