【BZOJ3698】XWW的难题 有上下界的最大流
【BZOJ3698】XWW的難題
Description
XWW是個影響力很大的人,他有很多的追隨者。這些追隨者都想要加入XWW教成為XWW的教徒。但是這并不容易,需要通過XWW的考核。
XWW給你出了這么一個難題:XWW給你一個N*N的正實數矩陣A,滿足XWW性。
稱一個N*N的矩陣滿足XWW性當且僅當:(1)A[N][N]=0;(2)矩陣中每行的最后一個元素等于該行前N-1個數的和;(3)矩陣中每列的最后一個元素等于該列前N-1個數的和。
現在你要給A中的數進行取整操作(可以是上取整或者下取整),使得最后的A矩陣仍然滿足XWW性。同時XWW還要求A中的元素之和盡量大。
Input
第一行一個整數N,N ≤ 100。
接下來N行每行包含N個絕對值小于等于1000的實數,最多一位小數。
Output
輸出一行,即取整后A矩陣的元素之和的最大值。無解輸出No。
Sample Input
43.1 6.8 7.3 17.2
9.6 2.4 0.7 12.7
3.6 1.2 6.5 11.3
16.3 10.4 14.5 0
Sample Output
129HINT
【數據規模與約定】
有10組數據,n的大小分別為10,20,30...100。
【樣例說明】
樣例中取整后滿足XWW性的和最大的矩陣為:
3 7 8 18
10 3 0 13
4 1 7 12
17 11 15 0
題解:顯然有上下界最大流,建邊?自己yy去~好吧還是說一下。
我們設行之和對應的點為Xi,列之和對應的點為Yj
1.S->Xi,下界是行之和的下整,上界是行之和的上整
2.Yj->T,下界是列之和的下整,上界是列之和的上整
3.Xi->Yj,下界是(i,j)的下整,上界是(i,j)的上整
由于是有上下界的網絡流,所以要新建SS,TT和T->S的INF的邊,那么最大流是什么呢?先跑SS->TT的可行流,判斷是否滿流,不滿流則判無解,然后記錄T->S這條邊的反向邊的流量x1,再刪掉SS,TT和T->S這條邊,跑從S到T的最大流x2,ans=x1+x2
?
#include <cstdio> #include <cstring> #include <iostream> #include <queue> #include <cmath> using namespace std; int n,cnt,S,T,ans,SS,TT,tot,mS,mT; int to[1000000],next[1000000],val[1000000],head[10000],d[10000]; int v[110][110],si[110],sj[110]; queue<int> q; void add(int a,int b,int c) {to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;to[cnt]=a,val[cnt]=0,next[cnt]=head[b],head[b]=cnt++; } int dfs(int x,int mf) {if(x==TT) return mf;int i,temp=mf,k;for(i=head[x];i!=-1;i=next[i]){if(d[to[i]]==d[x]+1&&val[i]){k=dfs(to[i],min(temp,val[i]));if(!k) d[to[i]]=0;val[i]-=k,val[i^1]+=k,temp-=k;if(!temp) break;}}return mf-temp; } int bfs() {memset(d,0,sizeof(d));while(!q.empty()) q.pop();q.push(SS),d[SS]=1;int i,u;while(!q.empty()){u=q.front(),q.pop();for(i=head[u];i!=-1;i=next[i]){if(!d[to[i]]&&val[i]){d[to[i]]=d[u]+1;if(to[i]==TT) return 1;q.push(to[i]);}}}return 0; } int main() {//freopen("bz3698.in","r",stdin);scanf("%d",&n);int i,j,b;double a;memset(head,-1,sizeof(head));S=2*n+1,T=S+1,SS=T+1,TT=SS+1;for(i=1;i<=n;i++){for(j=1;j<=n;j++){scanf("%lf",&a),b=floor(a);if(i==n&&j==n) continue;if(j==n){add(SS,i,b-si[i]),mS+=b-si[i],tot+=b-si[i];if(a-b>1e-2) add(S,i,1);}else if(i==n){add(j+n,TT,b-sj[j]),mT+=b-sj[j],tot+=b-sj[j];if(a-b>1e-2) add(j+n,T,1);}else{si[i]+=b,sj[j]+=b,ans+=b;if(a-b>1e-2) add(i,j+n,1);}}}add(S,TT,mS),add(SS,T,mT),add(T,S,1<<30);while(bfs()) tot-=dfs(SS,1<<30);if(tot){printf("No");return 0;}ans+=val[cnt-1],val[cnt-2]=val[cnt-1]=0;for(i=head[SS];i!=-1;i=next[i]) val[i]=val[i^1]=0;for(i=head[TT];i!=-1;i=next[i]) val[i]=val[i^1]=0;SS=S,TT=T;while(bfs()) ans+=dfs(SS,1<<30);printf("%d",ans*3);return 0; }?
轉載于:https://www.cnblogs.com/CQzhangyu/p/7071417.html
總結
以上是生活随笔為你收集整理的【BZOJ3698】XWW的难题 有上下界的最大流的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: java跨平台是什么意思_java的跨平
- 下一篇: 项目[P2P文件下载器]