日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Kriging模型

發布時間:2023/12/20 编程问答 28 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Kriging模型 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

Kriging回歸

given set s=[s1,s2,…,sm]T\mathbf{s}=[s_1,s_2,\ldots,s_m]^Ts=[s1?,s2?,,sm?]T, corresponding response g=[g1,g2,…,gm]T\mathbf{g}=[g_1,g_2,\ldots,g_m]^Tg=[g1?,g2?,,gm?]T,

predictor:
g^(t)=fT(t)β+Z(t)\hat{g}(t)=f^T(t)\beta+Z(t) g^?(t)=fT(t)β+Z(t)
f(t)f(t)f(t) is a regression function, the stochastic process Z(t)Z(t)Z(t) is assumed to have zero mean and covariance is :
E[Z(W)Z(Q)]=σ2R(θ;W,Q)E[Z(\mathbf{W})Z(\mathbf{Q})]=\sigma^2R(\theta;\mathbf{W},\mathbf{Q}) E[Z(W)Z(Q)]=σ2R(θ;W,Q)
RRR is the correlation function defined by parameter θ\thetaθ, the most widely used is gaussian correalaton function:
R(θ;W,Q)=∏j=1n[?θ(Qj?Wi)2]R(\theta;\mathbf{W},\mathbf{Q})=\prod_{j=1}^n\left[-\theta(Q_j-W_i)^2\right] R(θ;W,Q)=j=1n?[?θ(Qj??Wi?)2]
the response G(u)G(u)G(u) of a given test point u\mathbf{u}u obey a gaussian distribution, denote as
G(u)~N(μG(u),σG2(u))G(\mathbf{u})\sim N\left(\mu_G(\mathbf{u}),\sigma_G^2(\mathbf{u})\right) G(u)N(μG?(u),σG2?(u))
the mean and standard devision given as :
μG(u)=f(u)Tβ?+r(u)TR?1(g?Fβ?)\mu_G(\mathbf{u})=f(\mathbf{u})^T\beta^*+r(\mathbf{u})^T\mathbf{R}^{-1}(\mathbf{g}-\mathbf{F}\beta^*) μG?(u)=f(u)Tβ?+r(u)TR?1(g?Fβ?)

σG2(u)=σ2[1+vT(FTRTF)?1v?r(u)TR?1r(u)]\sigma_G^2(\mathbf{u})=\sigma^2\left[1+\mathbf{v}^T(\mathbf{F}^T\mathbf{R}^T\mathbf{F})^{-1}\mathbf{v}-r(\mathbf{u})^T\mathbf{R}^{-1}r(\mathbf{u})\right] σG2?(u)=σ2[1+vT(FTRTF)?1v?r(u)TR?1r(u)]

where
v=FTR?1r(u)?f(u)\mathbf{v}=\mathbf{F}^T\mathbf{R}^{-1}r(\mathbf{u})-f(\mathbf{u}) v=FTR?1r(u)?f(u)

σ2=1m(Y?Fβ?)TR?1(g?Fβ?)\sigma^2=\frac{1}{m}(\mathbf{Y}-\mathbf{F}\beta^*)^T\mathbf{R}^{-1}(\mathbf{g}-\mathbf{F}\beta^*) σ2=m1?(Y?Fβ?)TR?1(g?Fβ?)

β?=(FTR?1F)?1FTR?1g\beta^*=(\mathbf{F}^T\mathbf{R}^{-1}\mathbf{F})^{-1}\mathbf{F}^T\mathbf{R}^{-1}\mathbf{g} β?=(FTR?1F)?1FTR?1g

r(u)r(\mathbf{u})r(u) is correlation vector between S\mathbf{S}S and u\mathbf{u}u
r(u)=[R(θ;s1,u),…,R(θ;sm,u)]Tr(\mathbf{u})=[R(\theta;s_1,\mathbf{u}),\ldots,R(\theta;s_m,\mathbf{u})]^T r(u)=[R(θ;s1?,u),,R(θ;sm?,u)]T
FFF is the regression matrix
F=[f(s1),…,f(sm)]TF=[f(s_1),\ldots,f(s_m)]^T F=[f(s1?),,f(sm?)]T
the optimal coefficients θ?\theta^*θ? of the correlation function solves
θ?=min?θ{∣R∣1mσ2}\theta^*=\min_{\theta}\{|\mathbf{R}|^{\frac{1}{m}}\sigma^2\} θ?=θmin?{Rm1?σ2}

總結

以上是生活随笔為你收集整理的Kriging模型的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。