普通Kriging算法笔记
普通Kriging算法筆記
1. 前提假設
區域內已知輸入點坐標xix_{i}xi?,對應值為zi=f(xi)z_{i}=f(x_{i})zi?=f(xi?);待插值點表示為xxx,估計值為z?z^*z?,真值為zzz
1)待插值點可由一系列已知點的加權和表示,z=∑i=1nλiziz=\sum_{i=1}^{n} \lambda_{i} z_{i}z=∑i=1n?λi?zi?
2)區域內均值一致,即E[z]=μE[z]=\muE[z]=μ;方差一致,即Var[z]=δ2Var[z]=\delta^{2}Var[z]=δ2
3)區域內距離和方差滿足變異函數;
2. 約束條件
1)無偏約束:即估計值是無偏的E[z?z?]=0E[z-z^*]=0E[z?z?]=0
2)估計方差最小:min?λiVar[z?z?]\min_{ \lambda_{i}} Var[z-z^*]minλi??Var[z?z?]
3. 推導
3.1 無偏約束
E[z?z?]=E[z?∑i=1nλizi]=E[z]?∑i=1nλiE[zi]=μ?μ∑i=1nλi=0E[z-z^*]=E[z-\sum_{i=1}^{n} \lambda_{i} z_{i}]=E[z]-\sum_{i=1}^{n} \lambda_{i}E[z_i]=\mu -\mu\sum_{i=1}^{n} \lambda_{i}=0E[z?z?]=E[z?∑i=1n?λi?zi?]=E[z]?∑i=1n?λi?E[zi?]=μ?μ∑i=1n?λi?=0
得:∑i=1nλi=1\sum_{i=1}^{n} \lambda_{i}=1i=1∑n?λi?=1
3.2 估計方差最小
Var[z?z?]=Var[z]+Var[z?]?2Cov(z,z?){\color{Orange}Var[z-z^*]}={\color{Red}Var[z]}+{\color{Green}Var[z^*]}-2{\color{Blue}Cov(z,z^*)}Var[z?z?]=Var[z]+Var[z?]?2Cov(z,z?)
Var[z]=Cov(z,z){\color{Red}Var[z]}=Cov(z,z)Var[z]=Cov(z,z)
Var[z?]=Var[∑i=1nλizi]=Cov(∑i=1nλizi,∑i=1nλizi)=Cov(∑j=1nλizi,∑i=1nλjzj)=∑i=1n∑j=1nλiλjCov(zi,zj){\color{Green}Var[z^*]}=Var[\sum_{i=1}^{n} \lambda_{i} z_{i}]\\=Cov(\sum_{i=1}^{n} \lambda_{i} z_{i},\sum_{i=1}^{n} \lambda_{i} z_{i})\\=Cov(\sum_{j=1}^{n} \lambda_{i} z_{i},\sum_{i=1}^{n} \lambda_{j} z_{j})\\=\sum_{i=1}^{n}\sum_{j=1}^{n}\lambda_{i}\lambda_{j}Cov(z_{i},z_{j})Var[z?]=Var[∑i=1n?λi?zi?]=Cov(∑i=1n?λi?zi?,∑i=1n?λi?zi?)=Cov(∑j=1n?λi?zi?,∑i=1n?λj?zj?)=∑i=1n?∑j=1n?λi?λj?Cov(zi?,zj?)
Cov(z,z?)=Cov(z,∑i=1nλizi)=∑i=1nλiCov(z,zi){\color{Blue}Cov(z,z^*)}\\=Cov(z,\sum_{i=1}^{n} \lambda_{i} z_{i})\\=\sum_{i=1}^{n} \lambda_{i} Cov(z,z_{i})Cov(z,z?)=Cov(z,∑i=1n?λi?zi?)=∑i=1n?λi?Cov(z,zi?)
在這里引入半方差函數Cov(zi,zj)=δ2?rij{Cov}\left(z_i, z_j\right)=\delta^{2}-r_{i j}Cov(zi?,zj?)=δ2?rij?
Var[z?z?]=(δ2?r00)+∑i=1n∑j=1nλiλj(δ2?rij)?2∑i=1nλi(δ2?ri0)=2∑i=1nλi(ri0)?∑i=1n∑j=1nλiλj(rij)?r00{\color{Orange}Var[z-z^*]}=(\delta^{2}-r_{00})+\sum_{i=1}^{n}\sum_{j=1}^{n}\lambda_{i}\lambda_{j}(\delta^{2}-r_{i j})-2\sum_{i=1}^{n} \lambda_{i} (\delta^{2}-r_{i0})\\=2 \sum_{i=1}^n \lambda_i\left(r_{i 0}\right)-\sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j\left(r_{i j}\right)-r_{00}Var[z?z?]=(δ2?r00?)+∑i=1n?∑j=1n?λi?λj?(δ2?rij?)?2∑i=1n?λi?(δ2?ri0?)=2∑i=1n?λi?(ri0?)?∑i=1n?∑j=1n?λi?λj?(rij?)?r00?
接下來需要尋找使Var[z?z?]Var[z-z^*]Var[z?z?]最小的一組λi\lambda_{i}λi?,需要用到拉格朗日乘數法
回顧拉格朗日乘數法
設給定二元函數z=f(x,y)z=f(x,y)z=f(x,y),約束φ(x,y)=0\varphi (x,y)=0φ(x,y)=0,為尋找z=f(x,y)z=f(x,y)z=f(x,y)在約束條件下的極值點,構造拉格朗日函數F(x,y,λ)=f(x,y)+λφ(x,y)F(x,y,\lambda)=f(x,y)+\lambda\varphi (x,y)F(x,y,λ)=f(x,y)+λφ(x,y)
令F(x,y,λ)F(x,y,\lambda)F(x,y,λ)對x,y,λx,y,\lambdax,y,λ的偏導數為0,即
?F(x,y,λ)?x=?f(x,y)?x+λ?φ(x,y)?x=0\frac{\partial F(x,y,\lambda)}{\partial x} =\frac{\partial f(x,y)}{\partial x} +\lambda \frac{\partial \varphi (x,y)}{\partial x}=0?x?F(x,y,λ)?=?x?f(x,y)?+λ?x?φ(x,y)?=0
?F(x,y,λ)?y=?f(x,y)?y+λ?φ(x,y)?y=0\frac{\partial F(x,y,\lambda)}{\partial y} =\frac{\partial f(x,y)}{\partial y} +\lambda \frac{\partial \varphi (x,y)}{\partial y}=0?y?F(x,y,λ)?=?y?f(x,y)?+λ?y?φ(x,y)?=0
?F(x,y,λ)?λ=φ(x,y)=0\frac{\partial F(x,y,\lambda)}{\partial \lambda} =\varphi (x,y)=0?λ?F(x,y,λ)?=φ(x,y)=0
對上述問題構造拉格朗日函數
J=F(λ0,,λ1,…,λn,λ)=f(λ0,,λ1,…,λn)+λ?(∑i=1nλi?1)=Var[z?z?]+λ?(∑i=1nλi?1)J=F\left(\lambda_0, ,\lambda_1, \ldots ,\lambda_n, \lambda\right)=f\left(\lambda_0, ,\lambda_1, \ldots,\lambda_n\right)+\lambda \phi\left(\sum_{i=1}^n \lambda_{i}-1\right)\\=Var[z-z^*]+\lambda \phi\left(\sum_{i=1}^n \lambda_{i}-1\right)J=F(λ0?,,λ1?,…,λn?,λ)=f(λ0?,,λ1?,…,λn?)+λ?(∑i=1n?λi??1)=Var[z?z?]+λ?(∑i=1n?λi??1)
解得:
ri0?∑i=1nλirij+φ=0r_{i 0}-\sum_{i=1}^n \lambda_i r_{i j}+\varphi =0ri0??i=1∑n?λi?rij?+φ=0
3.3 求解權重
[r11r12…r1n1r21r22…r2n1……………rn1rn2…rnn111…10][λ1λ2…λnφ]=[r1or2o…rno1]\left[\begin{array}{ccccc} r_{11} & r_{12} & \ldots & r_{1 n} & 1 \\ r_{21} & r_{22} & \ldots & r_{2 n} & 1 \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ r_{n 1} & r_{n 2} & \ldots & r_{n n} & 1 \\ 1 & 1 & \ldots & 1 & 0 \end{array}\right]\left[\begin{array}{c} \lambda_1 \\ \lambda_2 \\ \ldots \\ \lambda_n \\ \varphi \end{array}\right]=\left[\begin{array}{c} r_{1 o} \\ r_{2 o} \\ \ldots \\ r_{n o} \\ 1 \end{array}\right]???????r11?r21?…rn1?1?r12?r22?…rn2?1?……………?r1n?r2n?…rnn?1?11…10???????????????λ1?λ2?…λn?φ????????=???????r1o?r2o?…rno?1????????
根據變異函數,可將距離轉換為rijr_{i j}rij?,即方程左邊第一項和右邊都已知,可求解出權重和拉格朗日乘子
預測值為:z=∑i=1nλiziz=\sum_{i=1}^{n} \lambda_{i} z_{i}z=∑i=1n?λi?zi?
預測方差為:Var[z?z?]=2∑i=1nλi(ri0)?∑i=1n∑j=1nλiλj(rij)?r00=2∑i=1nλi(∑i=1nλirij?φ)?∑i=1n∑j=1nλiλj(rij)?r00=∑i=1nλi(ri0)?φVar[z-z^*]=2 \sum_{i=1}^n \lambda_i\left(r_{i 0}\right)-\sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j\left(r_{i j}\right)-r_{00}\\=2 \sum_{i=1}^n \lambda_i\left(\sum_{i=1}^n \lambda_i r_{i j}-\varphi \right)-\sum_{i=1}^n \sum_{j=1}^n \lambda_i \lambda_j\left(r_{i j}\right)-r_{00}\\= \sum_{i=1}^n \lambda_i\left(r_{i 0}\right)-\varphiVar[z?z?]=2∑i=1n?λi?(ri0?)?∑i=1n?∑j=1n?λi?λj?(rij?)?r00?=2∑i=1n?λi?(∑i=1n?λi?rij??φ)?∑i=1n?∑j=1n?λi?λj?(rij?)?r00?=∑i=1n?λi?(ri0?)?φ
總結
以上是生活随笔為你收集整理的普通Kriging算法笔记的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: SSM框架下打卡签到增加积分功能的实现
- 下一篇: 4G模块 EC03-DNC的常用AT指令