日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 编程问答 >内容正文

编程问答

数据挖掘常用方法

發(fā)布時(shí)間:2023/12/29 编程问答 31 豆豆
生活随笔 收集整理的這篇文章主要介紹了 数据挖掘常用方法 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

原文出自:http://www.vsharing.com/k//2013-10/690272.html

(1)分類。分類是找出數(shù)據(jù)庫(kù)中的一組數(shù)據(jù)對(duì)象的共同特點(diǎn)并按照分類模式將其劃分為不同的類,其目的是通過(guò)分類模型,將數(shù)據(jù)庫(kù)中的數(shù)據(jù)項(xiàng)映射到摸個(gè)給定的類別中。可以應(yīng)用到涉及到應(yīng)用分類、趨勢(shì)預(yù)測(cè)中,如淘寶商鋪將用戶在一段時(shí)間內(nèi)的購(gòu)買情況劃分成不同的類,根據(jù)情況向用戶推薦關(guān)聯(lián)類的商品,從而增加商鋪的銷售量。

(2)回歸分析。回歸分析反映了數(shù)據(jù)庫(kù)中數(shù)據(jù)的屬性值的特性,通過(guò)函數(shù)表達(dá)數(shù)據(jù)映射的關(guān)系來(lái)發(fā)現(xiàn)屬性值之間的依賴關(guān)系。它可以應(yīng)用到對(duì)數(shù)據(jù)序列的預(yù)測(cè)及相關(guān)關(guān)系的研究中去。在市場(chǎng)營(yíng)銷中,回歸分析可以被應(yīng)用到各個(gè)方面。如通過(guò)對(duì)本季度銷售的回歸分析,對(duì)下一季度的銷售趨勢(shì)作出預(yù)測(cè)并做出針對(duì)性的營(yíng)銷改變。

(3)聚類。聚類類似于分類,但與分類的目的不同,是針對(duì)數(shù)據(jù)的相似性和差異性將一組數(shù)據(jù)分為幾個(gè)類別。屬于同一類別的數(shù)據(jù)間的相似性很大,但不同類別之間數(shù)據(jù)的相似性很小,跨類的數(shù)據(jù)關(guān)聯(lián)性很低。

(4)關(guān)聯(lián)規(guī)則。關(guān)聯(lián)規(guī)則是隱藏在數(shù)據(jù)項(xiàng)之間的關(guān)聯(lián)或相互關(guān)系,即可以根據(jù)一個(gè)數(shù)據(jù)項(xiàng)的出現(xiàn)推導(dǎo)出其他數(shù)據(jù)項(xiàng)的出現(xiàn)。關(guān)聯(lián)規(guī)則的挖掘過(guò)程主要包括兩個(gè)階段:第一階段為從海量原始數(shù)據(jù)中找出所有的高頻項(xiàng)目組;第二階段為從這些高頻項(xiàng)目組產(chǎn)生關(guān)聯(lián)規(guī)則。關(guān)聯(lián)規(guī)則挖掘技術(shù)已經(jīng)被廣泛應(yīng)用于金融行業(yè)企業(yè)中用以預(yù)測(cè)客戶的需求,各銀行在自己的ATM 機(jī)上通過(guò)捆綁客戶可能感興趣的信息供用戶了解并獲取相應(yīng)信息來(lái)改善自身的營(yíng)銷。

(5)神經(jīng)網(wǎng)絡(luò)方法。神經(jīng)網(wǎng)絡(luò)作為一種先進(jìn)的人工智能技術(shù),因其自身自行處理、分布存儲(chǔ)和高度容錯(cuò)等特性非常適合處理非線性的以及那些以模糊、不完整、不嚴(yán)密的知識(shí)或數(shù)據(jù)為特征的處理問(wèn)題,它的這一特點(diǎn)十分適合解決數(shù)據(jù)挖掘的問(wèn)題。典型的神經(jīng)網(wǎng)絡(luò)模型主要分為三大類:第一類是以用于分類預(yù)測(cè)和模式識(shí)別的前饋式神經(jīng)網(wǎng)絡(luò)模型,其主要代表為函數(shù)型網(wǎng)絡(luò)、感知機(jī);第二類是用于聯(lián)想記憶和優(yōu)化算法的反饋式神經(jīng)網(wǎng)絡(luò)模型,以Hopfield 的離散模型和連續(xù)模型為代表。第三類是用于聚類的自組織映射方法,以ART 模型為代表。雖然神經(jīng)網(wǎng)絡(luò)有多種模型及算法,但在特定領(lǐng)域的數(shù)據(jù)挖掘中使用何種模型及算法并沒(méi)有統(tǒng)一的規(guī)則,而且人們很難理解網(wǎng)絡(luò)的學(xué)習(xí)及決策過(guò)程。

(6)Web數(shù)據(jù)挖掘。Web數(shù)據(jù)挖掘是一項(xiàng)綜合性技術(shù),指Web 從文檔結(jié)構(gòu)和使用的集合C 中發(fā)現(xiàn)隱含的模式P,如果將C看做是輸入,P 看做是輸出,那么Web 挖掘過(guò)程就可以看做是從輸入到輸出的一個(gè)映射過(guò)程。

當(dāng)前越來(lái)越多的Web 數(shù)據(jù)都是以數(shù)據(jù)流的形式出現(xiàn)的,因此對(duì)Web 數(shù)據(jù)流挖掘就具有很重要的意義。目前常用的Web數(shù)據(jù)挖掘算法有:PageRank算法,HITS算法以及LOGSOM 算法。這三種算法提到的用戶都是籠統(tǒng)的用戶,并沒(méi)有區(qū)分用戶的個(gè)體。目前Web 數(shù)據(jù)挖掘面臨著一些問(wèn)題,包括:用戶的分類問(wèn)題、網(wǎng)站內(nèi)容時(shí)效性問(wèn)題,用戶在頁(yè)面停留時(shí)間問(wèn)題,頁(yè)面的鏈入與鏈出數(shù)問(wèn)題等。在Web 技術(shù)高速發(fā)展的今天,這些問(wèn)題仍舊值得研究并加以解決。

總結(jié)

以上是生活随笔為你收集整理的数据挖掘常用方法的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。