日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

ANN:Asymmetric Non-local Neural Networks for Semantic Segmentation

發布時間:2023/12/29 编程问答 30 豆豆
生活随笔 收集整理的這篇文章主要介紹了 ANN:Asymmetric Non-local Neural Networks for Semantic Segmentation 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

code pytorch

原始的Non-local Block 結構圖

1.Abstract

標準non-local存在的問題:

  • 計算量過大
  • GPU內存占用過高
  • 作者提出了用于語義分割的非對稱非局部神經網絡,它具有兩個突出的組成部分:非對稱金字塔非局部塊(APNB:大大減少了計算量和內存消耗)和非對稱融合非局部塊(AFNB)。

    2.Introduction


    之前的研究表明:
    如果充分利用遠程依賴關系,則可以提高性能。

    對于標準的non-local 塊,只要key分支和value分支的輸出保持相同的大小,則非局部塊的輸出大小將保持不變。 考慮到這一點,如果我們只能從key分支和value分支中采樣幾個代表性的點,則有可能在不犧牲性能的情況下大大降低了時間復雜度。 所以將圖中的N改成S(S<<N)。

    3.Asymmetric Non-local Neural Network


    3.1 Revisiting Non-local Block
  • 輸入特征X∈RC×H×W,使用三個1×1卷積Wφ,Wθ和Wγ將X變換為φ∈RC?×H×W
    θ∈RC?×H×W和γ∈RC?×H×W
  • 展平為C?×N的大小,其中N表示空間位置的總數,即N = H·W。求相似矩陣
    V∈RN×N
  • 對V進行歸一化,歸一化函數f可以采用softmax,rescaling和none的形式。
  • 對于γ中的每個位置,attention層的輸出為

  • 最終輸出為

    其中也由1×1卷積實現的Wo用作加權參數,原始輸入X,將通道尺寸從C?恢復到C。
  • 3.2. Asymmetric Pyramid Non-local Block

    非局部網絡有效地捕獲了對語義分段至關重要的遠程依賴關系。標準的非局部操作非常耗時且占用內存。顯然,大矩陣乘法是非局部塊效率低下的主要原因。

    我們將N更改為另一個數字S(S << N),輸出大小將保持不變,即


    將N更改為一個小數S等效于從θ和γ采樣幾個代表點,而不是選擇所有空間點,如圖1所示。因此,計算復雜性可以大大減少

    具體描述:

  • 我們在θ和γ之后添加采樣模塊Pθ和Pγ,以采樣幾個稀疏的錨點,分別表示為
    θP∈RC?×S和γP∈RC?×S,其中S是采樣的錨點數。

  • 計算φ與錨點θP之間的相似度矩陣VP:

    注意,VP是大小為N×S的不對稱矩陣。然后,VP通過與標準非局部塊相同的歸一化函數,得到統一的相似矩陣。

  • attention輸出:


    這種不對稱矩陣乘法會降低時間復雜度。但是,很難確保當S小時,性能不會同時下降太多。
    為了解決上述問題,我們在非局部塊中嵌入金字塔池以增強全局表示,同時減少計算開銷。


  • 通過這樣做,我們現在得出了不對稱金字塔非本地塊(APNB)的最終公式,如圖3所示。 一個重要的變化是在θ和γ之后分別添加一個空間金字塔池模塊以采樣錨。 在圖4中清楚地描述了該采樣過程,其中在θ或γ之后應用了幾個合并層,然后將四個合并結果展平并連接起來用作下一層的輸入。

    我們將空間金字塔池化模塊表示為和,其中上標n表示池化層輸出大小的寬度(或高度)(經驗上,寬度等于高度)。 在我們的模型中,我們設置n?{1,3,6,8}。 那么錨點的總數是

    空間金字塔池提供了有關全局場景語義線索的足夠的特征統計信息,以糾正由于減少的計算而導致的潛在性能下降。

    3.3. Asymmetric Fusion Non-local Block

    標準非局部塊僅具有一個輸入源,而FNB(Fusion Non-local Block)具有兩個輸入源:高級特征圖Xh∈RCh×Nh和低級特征圖Xl∈RCl×Nl
    同樣,使用1×1卷積和將Xh和Xl變換為


    然后,通過矩陣相乘來計算φh與θl之間的相似度矩陣
    然后對VF進行歸一化,得到統一的相似度矩陣

    3.4. Network Architecture

    ResNet-101作為我們的骨干網絡,刪除了最后兩個下采樣操作,并使用膨脹卷積來保存輸入圖像的最后兩個階段中的特征圖。我們使用AFNB融合了Stage4和Stage5的功能。 隨后將融合的特征與Stage5之后的特征圖關聯在一起,避免了AFNB無法產生準確的增強特征的情況。

    總結

    以上是生活随笔為你收集整理的ANN:Asymmetric Non-local Neural Networks for Semantic Segmentation的全部內容,希望文章能夠幫你解決所遇到的問題。

    如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

    主站蜘蛛池模板: 亚洲一区在线观看视频 | 超碰888| 欧美日韩国产一区二区在线观看 | 日韩网站视频 | 99久久精品久久久久久清纯 | 久久人人爽天天玩人人妻精品 | 超碰在线视屏 | 日韩在线导航 | 天天插av | 国产成人精品自拍 | 欧美精品一区二区三区在线 | 久久看av | 中文字幕一区二区三区乱码人妻 | 日本一区中文字幕 | 日韩黄色录像 | 激情五月综合 | 日本熟伦人妇xxxx | 国产亚洲精品久久久久久久久动漫 | 久久视频在线观看免费 | 丁香综合 | 国产日产精品一区 | 男人日女人b视频 | 国产在线观看免费av | 国产jizz | 国产精品久久久久久久免费大片 | 华丽的外出在线观看 | 精品国产乱码一区二 | 老湿影院av| 91啦丨九色丨刺激 | 99热免费观看 | va毛片 | 无码人妻精品一区二区三区66 | 在线免费观看黄色网址 | 人妖被c到高潮欧美gay | 国产又粗又猛 | 国产黄频 | 激情免费av | 第一章豪妇荡乳黄淑珍 | av视觉盛宴 | 国产私人影院 | 毛片毛片毛片毛片毛片毛片 | 最近免费中文字幕大全免费版视频 | 日韩18p| 特级黄色片 | 两个小y头稚嫩紧窄h文 | 亚欧洲精品| 日韩免费在线观看视频 | 中文字幕 亚洲一区 | 亚洲欧美一区二区三区在线 | 亚洲高清中文字幕 | 色综合狠狠操 | 男女插插插网站 | 福利色导航 | 欧美伦理一区 | 午夜激情电影在线观看 | 日韩在线视频一区 | japanese国产打屁股网站 | 理论片午午伦夜理片影院99 | 黄色福利站| 日日鲁鲁鲁夜夜爽爽狠狠视频97 | 国产网站av | 国产午夜福利在线播放 | 爱爱视频网站 | 欧美日韩高清一区二区 | 女生毛片| 日韩动漫av| 国产人妖在线 | 午夜综合网 | 国产特级淫片免费看 | 欧美视频一区二区三区在线观看 | 综合性色| 久久a级片 | 99久久精品国产一区色 | 国产精品夜夜躁视频 | 黄色a级免费 | 艳妇乳肉豪妇荡乳av无码福利 | av大片免费看 | 欧洲熟妇的性久久久久久 | 新婚夫妇白天啪啪自拍 | 五月天婷婷在线播放 | 中出亚洲 | 国产精品1000部啪视频 | 国产综合无码一区二区色蜜蜜 | 成人免费观看视频大全 | 午夜精品一区二区三区在线视频 | 国产精品久久久久久久久免费桃花 | 吊视频一区二区三区 | 97超级碰碰碰 | 男操女视频网站 | 波多野结衣黄色片 | 日日夜夜精 | 91不卡视频 | 深爱激情久久 | 欧美日本色 | 无遮挡aaaaa大片免费看 | 青草成人免费视频 | 国产亚洲片 | 美腿丝袜一区二区三区 | 中文字幕一区二区人妻电影 |