Java常用spark的pom.xml与读取csv为rdd到最终join操作+java常用pom.xml文件
能進行join的只能是:
JavaPairRDD--------------------------------------------------------------------第一種方案------------------------------------------------------------------------
代碼如下:
import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.function.Function; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaSparkContext; import scala.Tuple2; import org.apache.log4j.Logger; import java.util.Arrays; import java.util.List;public class java_join {static class Entity {private String name;private Integer age;public Entity(String name, Integer age) //構造函數{this.name = name;this.age = age;}public String getName() {return name;}public Integer getAge() {return age;}}//--------------------------------------------------------------------------------------------------public static void main(String[] args){Logger.getLogger("org.apache.hadoop").setLevel(org.apache.log4j.Level.WARN);Logger.getLogger("org.apache.spark").setLevel(org.apache.log4j.Level.WARN);Logger.getLogger("org.project-spark").setLevel(org.apache.log4j.Level.WARN);String appName = "test";String master = "local[2]";String path = "hdfs://Desktop:9000/rdd3.csv";SparkConf conf = new SparkConf().setAppName(appName).setMaster(master) .set("spark.serializer","org.apache.spark.serializer.KryoSerializer");JavaSparkContext sc = new JavaSparkContext(conf);// 這個keyby會把age放前,name放后JavaPairRDD<Integer, Entity> pairRDD = sc.parallelize(Arrays.asList(new Entity("zhangsan", 11),new Entity("lisi", 11),new Entity("wangwu", 13))).keyBy(Entity::getAge);JavaPairRDD<Integer, Entity> javaPairRDD = sc.textFile(path).map(line -> {String[] strings = line.split(",");String name = strings[0];Integer age = Integer.valueOf(strings[1]);return new Entity(name, age);}).keyBy(Entity::getAge);System.out.println("--------------------------------------------------------");System.out.println(javaPairRDD.collect());JavaPairRDD<Integer, Tuple2<Entity, Entity>> collect = pairRDD.join(javaPairRDD);System.out.println("-------------------------查看join結果-------------------------------");List<Tuple2<Integer, Tuple2<Entity, Entity>>> result = collect.collect();for (int i = 0; i < result.size(); i++){System.out.print("List[");System.out.print(result.get(i)._1);System.out.print(",Tuple2(");System.out.print(result.get(i)._2._1.name);System.out.print(",");System.out.print(result.get(i)._2._2.name);System.out.println(")]");}} }實驗驗結果是:
List[11,Tuple2(zhangsan,zhangsan)]
List[11,Tuple2(zhangsan,lisi)]
List[11,Tuple2(lisi,zhangsan)]
List[11,Tuple2(lisi,lisi)]
rdd3.csv的內容是:
zhangsan,11
lisi,11
wangwu,14
----------------------第二種方案--------------------------
import com.sun.rowset.internal.Row; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.JavaPairRDD$; import org.apache.spark.api.java.function.*; import org.slf4j.event.Level; import scala.Tuple2; import java.util.*; import java.util.Random; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.SparkContext; import java.util.Iterator; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaSparkContext; import java.lang.*; //import org.apache.log4j.Level; import org.apache.log4j.Logger; //import java.util.logging.Logger;import scala.Tuple2;public class sampling_salting {public static void main(String[] args) {Logger.getLogger("org.apache.hadoop").setLevel(org.apache.log4j.Level.WARN);Logger.getLogger("org.apache.spark").setLevel(org.apache.log4j.Level.WARN);Logger.getLogger("org.project-spark").setLevel(org.apache.log4j.Level.WARN);SparkConf conf = new SparkConf().setMaster("local").setAppName("join");JavaSparkContext sc = new JavaSparkContext(conf);String path1="hdfs://Desktop:9000/rdd1.csv";String path2="hdfs://Desktop:9000/rdd2.csv";JavaPairRDD<Integer, String> rdd1 = sc.textFile(path1).mapToPair(new PairFunction<String, Integer, String>(){@Overridepublic Tuple2<Integer, String> call(String s) throws Exception{String[] strings=s.split(",");Integer ids = Integer.valueOf(strings[0]);String greet=strings[1];return Tuple2.apply(ids,greet);}});JavaPairRDD<Integer,String>rdd2=sc.textFile(path2) .mapToPair(line->{String[] strings=line.split(",");Integer ids = Integer.valueOf(strings[0]);String greet=strings[1];return new Tuple2<>(ids,greet); });System.out.println(rdd1.collect());System.out.println(rdd2.collect());JavaPairRDD<Integer, Tuple2<String, String>> result = rdd1.join(rdd2);System.out.println(result.collect());} }上述代碼中,轉化為最終的JavaPairRDD使用了mapToPair有兩種辦法:
return Tuple2.apply(ids,greet);
return new Tuple2<>(ids,greet);
rdd1.csv
001,hello
001,hello
001,hello
001,hello
?
rdd2.csv
002,hello
002,hello
002,hello
002,hello
hdfs dfs -put rdd1.csv /
hdfs dfs -put rdd2.csv /
?
--------------------------------------------Java常用的pom.xml文件--------------------------------------------------------------------------------
?
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>java_join</groupId><artifactId>java_join</artifactId><version>1.0-SNAPSHOT</version><build><plugins><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-compiler-plugin</artifactId><configuration><source>1.8</source><target>1.8</target><encoding>UTF-8</encoding></configuration></plugin></plugins></build><dependencies><dependency><groupId>org.apache.spark</groupId><artifactId>spark-core_2.12</artifactId><version>3.0.0</version></dependency><dependency><groupId>org.apache.spark</groupId><artifactId>spark-sql_2.12</artifactId><version>3.0.0</version></dependency><dependency><groupId>org.apache.spark</groupId><artifactId>spark-streaming_2.12</artifactId><version>3.0.0</version><scope>provided</scope></dependency><dependency><groupId>org.apache.spark</groupId><artifactId>spark-mllib_2.12</artifactId><version>3.0.0</version><scope>runtime</scope></dependency><!-- https://mvnrepository.com/artifact/org.apache.spark/spark-graphx --><dependency><groupId>org.apache.spark</groupId><artifactId>spark-graphx_2.12</artifactId><version>3.0.0</version></dependency></dependencies></project>總結
以上是生活随笔為你收集整理的Java常用spark的pom.xml与读取csv为rdd到最终join操作+java常用pom.xml文件的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 口袋精灵2(口袋精灵最新版本下载)
- 下一篇: java美元兑换,(Java实现) 美元