日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

Bzoj5093: 图的价值

發布時間:2023/12/31 编程问答 25 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Bzoj5093: 图的价值 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

題面

Bzoj

Sol

一張無向無重邊自環的圖的邊數最多為\(\frac{n(n-1)}{2}\)
考慮每個點的貢獻
\[n*2^{\frac{n(n-1)}{2} - (n-1)}\sum_{i=0}^{n-1}i^kC(n-1, i)\]
很好理解
考慮后面的\(\sum_{i=0}^{n-1}i^kC(n-1, i)\)
\(i^k\)這里把它用第二類斯特林數表示出來
那么就是
\[\sum_{i=0}^{n-1}\sum_{j=0}^{i}S(k, j) j!C(i, j)\]
\[=\sum_{j=0}^{n-1}S(k, j)j!\sum_{i=j}^{n-1}C(n-1,i)C(i,j)\]

考慮\(\sum_{i=j}^{n-1}C(n-1,i)C(i,j)\)
就是\(C(n-1, j)\sum_{i=j}^{n-1}C(n-1, i-j)=C(n-1,j)2^{n-1-j}\)

帶回去
\[\sum_{j=0}^{n-1}j!C(n-1,j)2^{n-1-j}S(k, j)\]
\[=\sum_{j=0}^{n-1}\frac{(n-1)!}{(n-1-j)!}2^{n-1-j}S(k,j)\]
又由于\(i>j\)\(S(i, j)=0\)\(n\)很大枚到\(k\)就可以了

# include <bits/stdc++.h> # define RG register # define IL inline # define Fill(a, b) memset(a, b, sizeof(a)) using namespace std; typedef long long ll; const int Zsy(998244353); const int Phi(998244352); const int G(3); const int _(8e5 + 5);IL int Input(){RG int x = 0, z = 1; RG char c = getchar();for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);return x * z; }int n, k, ans, A[_], B[_], l, N, r[_], mx, fac[_], inv[_];IL int Pow(RG ll x, RG ll y){RG ll ret = 1;for(; y; y >>= 1, x = x * x % Zsy) if(y & 1) ret = ret * x % Zsy;return ret; }IL void NTT(RG int* P, RG int opt){for(RG int i = 0; i < N; ++i) if(i < r[i]) swap(P[i], P[r[i]]);for(RG int i = 1; i < N; i <<= 1){RG int W = Pow(G, Phi / (i << 1));if(opt == -1) W = Pow(W, Zsy - 2);for(RG int p = i << 1, j = 0; j < N; j += p)for(RG int w = 1, k = 0; k < i; ++k, w = 1LL * w * W % Zsy){RG int X = P[k + j], Y = 1LL * w * P[k + j + i] % Zsy;P[k + j] = (X + Y) % Zsy, P[k + j + i] = (X - Y + Zsy) % Zsy;}}if(opt == 1) return;RG int Inv = Pow(N, Zsy - 2);for(RG int i = 0; i < N; ++i) P[i] = 1LL * P[i] * Inv % Zsy; }IL void Mul(){for(N = 1; N <= mx + mx; N <<= 1) ++l;for(RG int i = 0; i < N; ++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));NTT(A, 1); NTT(B, 1);for(RG int i = 0; i < N; ++i) A[i] = 1LL * A[i] * B[i] % Zsy;NTT(A, -1); }IL void Up(RG int &x, RG int y){x += y;if(x >= Zsy) x -= Zsy; }int main(RG int argc, RG char* argv[]){n = Input(), k = Input(), mx = min(n - 1, k);fac[0] = 1;for(RG int i = 1; i <= mx; ++i) fac[i] = 1LL * i * fac[i - 1] % Zsy;inv[mx] = Pow(fac[mx], Zsy - 2);for(RG int i = mx - 1; ~i; --i) inv[i] = 1LL * inv[i + 1] * (i + 1) % Zsy;for(RG int i = 0; i <= mx; ++i){A[i] = B[i] = inv[i];B[i] = 1LL * B[i] * Pow(i, k) % Zsy;if(i & 1) A[i] = Zsy - A[i];}Mul(); RG int Inv = Pow(2, Zsy - 2);for(RG int i = 0, e = 1, x = n - 1, pw = Pow(2, n - 1); i <= mx; ++i, --x){Up(ans, 1LL * e * pw % Zsy * A[i] % Zsy);e = 1LL * e * x % Zsy;pw = 1LL * pw * Inv % Zsy;}ans = 1LL * n * Pow(2, 1LL * n * (n - 1) / 2 - n + 1) % Zsy * ans % Zsy;printf("%d\n", ans);return 0; }

轉載于:https://www.cnblogs.com/cjoieryl/p/8456959.html

總結

以上是生活随笔為你收集整理的Bzoj5093: 图的价值的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。