日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 前端技术 > javascript >内容正文

javascript

Eight Machine Learning JavaScript Frameworks to Explore

發(fā)布時間:2023/12/31 javascript 34 豆豆
生活随笔 收集整理的這篇文章主要介紹了 Eight Machine Learning JavaScript Frameworks to Explore 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

Eight Machine Learning JavaScript Frameworks to Explore

[譯]:8個值得探索的JavaScript機器學習框架

In this post, you will learn about different JavaScript framework for machine learning: DeepLearn.js, PropelJS, ML-JS, ConvNetJS, KerasJS, STDLib, Limdu.js, and Brain.js.

[譯]:在這篇文章中,你將會學習到以下不同的JavaScript機器學習框架:

DeepLearn.js,PropelJS,ML-JS,ConvNetJS,KerasJs,STDLib,Limdu.js以及Brain.js。

JavaScript developers tend to look out for JavaScript frameworks that can be used to train machine learning models based on different machine learning algorithms. The following are some of the machine learning algorithms based on which models can be trained using different JavaScript frameworks listed in this article:

[譯]:JavaScript開發(fā)人員傾向于尋找可用于機器學習模型訓練的JavaScript框架。下面是一些機器學習算法,這些算法基于本文中列出的不同JavaScript框架來模型訓練:

  • Simple linear regression
  • [譯]:簡單線性回歸
  • Multi-variate linear regression
  • [譯]:多變量線性回歸
  • Logistic regression
  • [譯]:邏輯回歸
  • Naive Bayesian
  • [譯]:樸素貝葉斯分類算法
  • K-nearest neighbor (KNN)
  • [譯]:K最鄰近分類算法
  • K-means
  • [譯]:k-means
  • Support vector machine (SVM)
  • [譯]:支持向量機
  • Random forest
  • [譯]:隨機森林
  • Decision tree
  • [譯]:決策樹
  • Feedforward neural network
  • [譯]:前饋神經(jīng)網(wǎng)絡
  • Deep learning network
  • [譯]:深度學習網(wǎng)絡

In this post, you will learn about different JavaScript framework for machine learning. They are some of the following:

[譯]:在這篇文章中,你會學到不同的JavaScript機器學習框架,它們?nèi)缦?#xff1a;

DeepLearn.js

Deeplearn.js is an open-source machine learning JavaScript library by Google, which can be used for different purposes such as training neural networks in the browser, understanding ML models, for education purposes, etc. You can run pre-trained models in inference mode. One can write the code in Typescript (ES6 JavaScript) or ES5 JavaScript. Ypi can get started very quickly by including the following code within a?head tag in the HTML file and writing JS programs for building the model.

[譯]:Deeplearn.js是一個谷歌開源的JavaScript機器學習庫,可用于不同的目的,例如在瀏覽器中訓練神經(jīng)網(wǎng)絡,理解ML模型,用于教育目的等等。你可以在推理模式中運行預先訓練的模型。可以在Typescript(ES6 JavaScript)或ES5 JavaScript中編寫代碼。你可以通過在HTML文件的head標簽中包含以下代碼并編寫用于構建模型的JS程序快速開始。

<script src="https://cdn.jsdelivr.net/npm/deeplearn@latest"></script> <!-- or --> <script src="https://unpkg.com/deeplearn@latest"></script>

PropelJS

Propel, a JavaScript library, provides a GPU-backed numpy-like infrastructure for scientific computing. It could be used both for NodeJS apps and in the browser. The following is the setup code for the browser:

[譯]:Propel,一個JavaScript庫,為科學計算提供了GPU支持的類似numpy的基礎架構。它可以用于NodeJS應用和瀏覽器。以下是瀏覽器的設置代碼:

<script src="https://unpkg.com/propel@3.1.0"></script>

The following code can be used for a NodeJS app:

[譯]:以下是在NodeJS應用中使用的代碼:

npm install propel import { grad } from "propel";

Here is the documentation for PropelJS (Propel doc). Here is the?GitHub page for Propel.

[譯]:這是PropelJS的文檔,這是PropelJS的GitHub。(需要進入請點擊英文中的鏈接)

ML-JS

ML-JS provides machine learning tools for working with NodeJS and browsers. The ML JS tool can be set up using the following code:

[譯]:ML-JS提供了用于使用NodeJS和瀏覽器的機器學習工具。ML JS工具可以使用以下代碼進行設置:

<script src="https://www.lactame.com/lib/ml/2.2.0/ml.min.js"></script>

The following machine learning algorithms are supported:

[譯]:支持以下機器學習算法:

  • Unsupervised learning
  • ?[譯]:無監(jiān)督學習
    • Principal component analysis (PCA)
    • [譯]:主成分分析(PCA)
    • K-means clustering
    • [譯]:K均值聚類算法
  • Supervised learning
  • [譯]:監(jiān)督學習
    • Simple linear regression
    • [譯]:簡單線性回歸
    • Multi-variate linear regression
    • [譯]:多變量變量線性回歸
    • Support vector machines (SVM)
    • [譯]:支持向量機(SVM)
    • Naive Bayes
    • [譯]:樸素貝葉斯
    • K-Nearest Neighbor (KNN)
    • [譯]:K最近鄰(KNN)
    • Partial least squares (PLS)
    • [譯]:偏最小二乘法)(PLS)
    • Decision tree: CART
    • [譯]:決策樹
    • Random forest
    • [譯]:隨機森林
    • Logistic regression
    • [譯]:邏輯回歸
  • Artificial neural network
  • [譯]:人工神經(jīng)網(wǎng)絡
    • Feedforward neural network
    • [譯]:前饋神經(jīng)網(wǎng)絡

ConvNetJS

ConvNetJS?is a JavaScript library for training deep learning models (neural networks) entirely in your browser. This library can also be used in NodeJS app.

[譯]:ConvNetJS是一個JavaScript庫,完全用于在瀏覽器中訓練深度學習模型(神經(jīng)網(wǎng)絡)。這個庫也可以用于NodeJS應用。

In order to get started, get the minified version of ConvNetJS from the?ConvNetJS minified library. This is a?release page for ConvNetJS.

[譯]:想開始的話,可以從ConNetJS壓縮庫中獲取壓縮版的ConevNetJS。這是ConvNetJS的發(fā)布網(wǎng)頁。

<script src="convnet-min.js"></script>

The following are some important pages:

[譯]:以下是一些比較重要的網(wǎng)頁:

  • NPM package for ConvNetJS
  • [譯]:ConvNetJS NPM包
  • Getting started
  • [譯]:入門
  • Documentation
  • [譯]:文檔

KerasJS

With?KerasJS, you can run Keras models in the browser, with GPU support using WebGL. Models can also be run in Node.js, but only in CPU mode. Here is the?GitHub page on Keras. The following is the list of Keras models which can be run in the browser:

[譯]:通過KerasJS,你可以在瀏覽器中運行Keras模型,通過使用WebGL得到GPU知識。模型也可運行在Nodejs,但只能在CPU模型下運行。這是Keras的github網(wǎng)頁。以下是可以在瀏覽器中運行的Keras模型列表。

  • Basic convnet for MNIST
  • [譯]:MNIST的基本convnet
  • Convolutional variational autoencoder, trained on MNIST
  • [譯]:卷積變分自編碼器,在MNIST上訓練
  • Auxiliary classifier generative adversarial networks (AC-GAN) on MNIST
  • [譯]:MNIST上的輔助分類器生成式對抗網(wǎng)絡(AC-GAN)
  • 50-layer residual network, trained on ImageNet
  • [譯]:50層殘差網(wǎng)絡,在ImageNet上訓練
  • Inception v3, trained on ImageNet
  • [譯]:Inception v3,在ImageNet上訓練
  • DenseNet-121, trained on ImageNet
  • [譯]:DenseNet-121,在ImageNet上訓練
  • SqueezeNet v1.1, trained on ImageNet
  • [譯]:SqueezeNet v1.1,在ImageNet上訓練
  • Bidirectional LSTM for IMDB sentiment classification
  • [譯]:IMDB情緒分類的雙向LSTM

STDLib

STDLib?is a JavaScript library which can be used to build advanced statistical models and machine learning libraries. It can also be used for plotting and graphics functionality for data visualization and exploratory data analysis.

[譯]:STDLib是一個JavaScript庫,可用于構建高級統(tǒng)計模型和機器學習庫。它也可以用于數(shù)據(jù)可視化和探索性的數(shù)據(jù)分析的繪圖和圖形功能。

The following is a list of libraries in relation to ML:

[譯]:以下是與ML有關的庫列表:

  • Linear regression via Stochastic gradient descent (@stdlib/ml/online-sgd-regression)
  • [譯]:通過隨機梯度下降進行線性回歸(@ stdlib / ml / online-sgd-regression)
  • Binary classification via Stochastic gradient descent (@stdlib/ml/online-binary-classification)
  • [譯]:通過隨機梯度下降進行二元分類(@ stdlib / ml / online-binary-classification)
  • Natural language processing (@stdlib/nlp)
  • [譯]:自然語言處理(@ stdlib / nlp)

Limdu.js

Limdu.js?is a machine-learning framework for Node.js. It supports some of the following:

[譯]:Limdu.js是Node.js的機器學習框架。它支持以下一些內(nèi)容:

  • Binary classification
  • [譯]:二元分類
  • Multi-label classification
  • [譯]:多標簽分類
  • Feature engineering
  • [譯]:特征工程
  • SVM
  • [譯]:支持向量機

One can go about installing limdu.js using the following command:

[譯]:可以使用以下命令按照黃limdu.js

npm install limdu

Brain.js

Brain.js?is a set of JavaScript libraries for training neural networks and Naive-Bayesian classifier. The following can be used to setup Brain.js:

[譯]:Brain.js是一套用于訓練神經(jīng)網(wǎng)絡以及樸素貝葉斯分類器的JavaScript庫。以下代碼可用于安裝Brain.js:

npm install brain.js

One can also include the library in the browser using the following code:

[譯]:也可以通過使用以下代碼在瀏覽器中引入庫

<script src="https://raw.githubusercontent.com/harthur-org/brain.js/master/browser.js"></script>

The following can be used to install the Naive Bayesian classifier:

[譯]:以下代碼可以用于安裝樸素貝葉斯分類器

npm install classifier

In this post, you learned about different JavaScript libraries that can be used for training machine learning models in the browser or the Node.js app. For articles on machine learning, we recommend you check out our?machine learning archives.

[譯]:在這篇文章中,你了解了能在瀏覽器和Node.js應用中訓練機器學習模型的不同JavaScript庫。有關機器學習的文章,建議查看我們的機器學習檔案。

總結

以上是生活随笔為你收集整理的Eight Machine Learning JavaScript Frameworks to Explore的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 91成人在线 | 婷婷五月情| 一级少妇精品久久久久久久 | 91视频免费播放 | 免费观看a毛片 | 亚洲深夜福利视频 | 欧美精品 日韩 | 久久成人小视频 | 午夜久久久 | 自偷自拍亚洲 | 国产精品一区二区久久毛片 | 中文字幕一区二区人妻在线不卡 | 日本波多野结衣在线 | 91国产在线看| 午夜精品美女久久久久av福利 | 一本色道久久综合亚洲 | 体内精69xxxxx | 欧美xxxx83d | 播放美国生活大片 | 福利视频一区二区三区 | 亚州男人的天堂 | 日韩在线视频免费 | 青青青在线观看视频 | 污污免费视频 | 欧美日韩一区二区综合 | 高清国产一区二区三区四区五区 | 亚洲天堂av一区二区 | 青青操视频在线 | 亚洲精品aⅴ | 亚洲欧美一区二区三区在线 | 黑人操少妇 | 大伊人网 | 免费看成人毛片 | 麻豆高清免费国产一区 | 国产精品无码免费在线观看 | 欧美体内she精高潮 日韩一区免费 | 97人人爱| 久久久91精品国产一区二区三区 | 精品日韩在线播放 | 免费看又黄又无码的网站 | 国产免费又粗又猛又爽 | 这里只有精品视频在线 | 国产精品视频免费播放 | 欧美视频亚洲 | 亚洲三页 | av影片在线看 | 天天射日日操 | 亚洲一区有码 | 强伦人妻一区二区三区视频18 | 国产午夜精品理论片 | 欧美日韩中文国产一区发布 | 午夜影视剧场 | 亚洲第一自拍 | 欧美激情国产日韩精品一区18 | 国产又粗又黄的视频 | 国产精品视频一二区 | 九九免费精品视频 | 好看的毛片| 国产偷人妻精品一区二区在线 | 农村少妇久久久久久久 | 久久久久国产精品熟女影院 | 欧美在线免费 | 国产高清视频在线播放 | 91大神精品 | a毛片网站 | 白浆在线播放 | av网站在线免费观看 | 久久青青操 | 久久国产精品99久久人人澡 | 久久蜜桃av一区二区天堂 | 国产99久久久欧美黑人 | 国产精品久久久久久久免费 | 午夜一区 | 欧美日韩激情在线一区二区三区 | 色老头综合网 | 最新日韩在线视频 | 欧美人妻精品一区二区免费看 | 岛国av噜噜噜久久久狠狠av | 国产亚洲色婷婷久久99精品91 | 成人深夜在线 | 亚洲综合在线观看视频 | 国产成人无码a区在线观看视频 | 午夜久久久久久久久久 | 泷泽萝拉在线播放 | 欧美精品成人一区二区在线观看 | 国产精品丝袜视频 | 午夜精品视频一区 | 91国在线啪| 狠狠干中文字幕 | 野外做受又硬又粗又大视频√ | 久久精品国产亚洲 | 国产综合视频 | 一级视频在线免费观看 | 久久久精品亚洲 | 综合久久综合久久 | 色臀av| 女人天堂网站 | 捆绑束缚调教 | √天堂资源地址在线官网 |