Linux进程通信之信号量
生活随笔
收集整理的這篇文章主要介紹了
Linux进程通信之信号量
小編覺得挺不錯的,現在分享給大家,幫大家做個參考.
文章目錄
- 1 簡介
- 2 Posix信號量
- 2.1 有名信號量
- 2.2 無名信號量
- 2.3 例程變種
- 2.3.1 多生產者單消費者
- 2.3.2 多生產者多消費者
- 2.3.3 多緩沖讀取
- 3 System V信號量
- 3.1 System V信號量
- 3.2 示例
1 簡介
??信號量是用于提供不用進程或者不同線程之間的同步手段的原語,分為:
- Posix 有名信號量:可用于進程或者線程間的同步;
- Posix基于內存的信號量(無名信號量):存放于共享內存中,可用于進程或者線程的同步;
- System V信號量:在內核中維護,可用于進程或線程間的同步。
??另外信號量同時根據取值不同可分為:
- 二值信號量:取值只能是0或者1,可以實現類似互斥鎖的跨進程的鎖機制。
- 計數信號量:取值大于1。
??計數信號量具備兩種操作動作,稱為V(signal())與P(wait())(即部分參考書常稱的“PV操作”)。V操作會增加信號標S的數值,P操作會減少它。
- P操作,檢測信標值S:
- 如果S <= 0,則阻塞直到S > 0,并將信標值S=S-1;
- 如果S > 0,則直接S=S-1;
- V操作:直接增加信標值S=S+1。
??PV操作某種程度上等價于如下代碼只不過是原子的.
int p(int seq) {while(seq <= 0) ;return --seq; }int v(int seq) {return ++seq; }??互斥鎖,信號量和條件變量的區別:
2 Posix信號量
2.1 有名信號量
#include <semaphore.h> sem_t *sem_open(const char *name, int oflag, mode_t mode, unsigned int value); int sem_close(sem_t *sem); int sem_unlink(const char *name); int sem_post(sem_t *sem); int sem_wait(sem_t *sem); int sem_trywait(sem_t *sem); int sem_getvalue(sem_t *sem, int *sval);- sem_open:創建或者打開一個信號量;
- name:信號量在文件系統上的文件名;
- oflag:可以為0,O_CREAT或者O_CREAT|O_EXCL;
- mode:信號量的權限位;
- value:信號量的初值不能大于SEM_VALUE_MAX;
- 返回自sem_t是一個該信號量的標識符的指針;
- sem_close:關閉一個信號量,但是并不刪除信號量,另外進程終止系統會自動關閉當前進程打開的信號量;
- sem:信號量的指針,通過sem_open獲得;
- sem_unlink:刪除信號量,需要注意的是信號量同樣維護了一個引用計數,只有當引用計數為0時才會顯示的刪除;
- name:信號量的在文件系統上的唯一標示;
- sem_post:V操作,將信號量的值+1,并喚醒等待信號量的任意線程;
- sem:信號量的指針,通過sem_open獲得;
- sem_wait:P操作,如果當前信號量小于等于0則阻塞,將信號量的值-1,否則直接將信號量-1;
- sem:信號量的指針,通過sem_open獲得;
- sem_trywait:非阻塞的sem_wait;
- sem:信號量的指針,通過sem_open獲得;
- sem_getvalue:獲取當前信號量的值,如果當前信號量上鎖則返回0或者負值,其絕對值為信號量的值;
- sem:信號量的指針,通過sem_open獲得;
- sval:信號量的值;
- 以上的函數除了sem_open失敗返回SEM_FAILED,均是成功返回0,失敗返回-1并且設置errno。
??簡單的消費者-生產者問題:
#define BUFF_SIZE 5 typedef struct named_share {char buff[BUFF_SIZE];sem_t *lock;sem_t *nempty;sem_t *nstored;int items; }named_share;void* named_produce(void *arg) {named_share *ptr = arg;for(int i = 0;i < ptr->items;i++){lsem_wait(ptr->nempty);lsem_wait(ptr->lock); //鎖//生產物品ptr->buff[i % BUFF_SIZE] = rand() % 1000;printf("produce %04d into %2d\n", ptr->buff[i % BUFF_SIZE], i % BUFF_SIZE);sleep(rand()%2);lsem_post(ptr->lock); //解鎖lsem_post(ptr->nstored);}return NULL; }void* named_consume(void *arg) {named_share *ptr = arg;for(int i = 0;i < ptr->items;i++){lsem_wait(ptr->nstored);lsem_wait(ptr->lock); //鎖//生產物品printf("consume %04d at %2d\n", ptr->buff[i % BUFF_SIZE], i % BUFF_SIZE);ptr->buff[i % BUFF_SIZE] = -1;sleep(rand()%2);lsem_post(ptr->lock); //解鎖lsem_post(ptr->nempty);//iterator}return NULL; }void named_sem_test() {char *nempty_name = "nempty";char *nstored_name = "nstored";char *lock_name = "lock";int items = 10;int flag = O_CREAT | O_EXCL;named_share arg;srand(time(NULL));arg.items = items;memset(arg.buff, -1, sizeof(int) * BUFF_SIZE);arg.nempty = lsem_open(lpx_ipc_name(nempty_name), flag, FILE_MODE, BUFF_SIZE);arg.nstored = lsem_open(lpx_ipc_name(nstored_name), flag, FILE_MODE, 0);arg.lock = lsem_open(lpx_ipc_name(lock_name), flag, FILE_MODE, 1);pthread_t pid1, pid2;int val = 0;lsem_getvalue(arg.nstored, &val);lsem_getvalue(arg.nempty, &val);pthread_setconcurrency(2); lpthread_create(&pid1, NULL, named_produce, &arg);lpthread_create(&pid2, NULL, named_consume, &arg);lpthread_join(pid1, NULL);lpthread_join(pid2, NULL);lsem_unlink(lpx_ipc_name(nempty_name));lsem_unlink(lpx_ipc_name(nstored_name));lsem_unlink(lpx_ipc_name(lock_name)); }??結果:
? build git:(master) ? ./main produce 0038 into 0 produce 0022 into 1 produce 0049 into 2 produce 0060 into 3 produce 0090 into 4 consume 0038 at 0 consume 0022 at 1 consume 0049 at 2 consume 0060 at 3 consume 0090 at 4 produce 0031 into 0 produce -056 into 1 produce -103 into 2 produce -047 into 3 produce -100 into 4 consume 0031 at 0 consume -056 at 1 consume -103 at 2 consume -047 at 3 consume -100 at 42.2 無名信號量
int sem_init(sem_t *sem, int pshared, unsigned int value); int sem_destroy(sem_t *sem);- ```sem_init``:初始化一個無名信號量;
- sem:信號量的指針;
- pshared:標志是否共享:
- pshared==0:該信號量只能在同一進程不同線程之間共享,當進程終止則消失;
- pshared!=0:該信號量駐留與共享內存區,可以在不同進程之間進行共享;
- value:信號量的初值;
- 返回值出錯返回-1,成功并不返回0;
- sem_destroy:銷毀信號量。成功返回0,失敗返回-1。
??上面的程序的簡易修改:
void unnamed_sem_test() {int items = 10;named_share arg;srand(time(NULL));arg.items = items;memset(arg.buff, -1, sizeof(int) * BUFF_SIZE);arg.lock = (sem_t*)malloc(sizeof(sem_t));arg.nempty = (sem_t*)malloc(sizeof(sem_t));arg.nstored = (sem_t*)malloc(sizeof(sem_t));lsem_init(arg.lock, 0, 1);lsem_init(arg.nempty, 0, BUFF_SIZE);lsem_init(arg.nstored, 0, 0);pthread_t pid1, pid2;pthread_setconcurrency(2); lpthread_create(&pid1, NULL, named_produce, &arg);lpthread_create(&pid2, NULL, named_consume, &arg);lpthread_join(pid1, NULL);lpthread_join(pid2, NULL);lsem_destroy(arg.lock);lsem_destroy(arg.nempty);lsem_destroy(arg.nstored);SAFE_RELEASE(arg.lock);SAFE_RELEASE(arg.nempty);SAFE_RELEASE(arg.nstored); } ? build git:(master) ? ./main produce -120 into 0 produce -098 into 1 produce 0123 into 2 produce -058 into 3 produce 0028 into 4 consume -120 at 0 consume -098 at 1 consume 0123 at 2 consume -058 at 3 consume 0028 at 4 produce 0110 into 0 produce 0034 into 1 produce -068 into 2 produce -115 into 3 produce 0004 into 4 consume 0110 at 0 consume 0034 at 1 consume -068 at 2 consume -115 at 3 consume 0004 at 42.3 例程變種
2.3.1 多生產者單消費者
??多生產者單消費者需要關注的是不同生產者之間的進度同步。
typedef struct multp_singc_share {int i;sem_t nempty;sem_t nstored;sem_t lock;int items;char buff[BUFF_SIZE]; }multp_singc_share;void* multp_singc_produce(void *arg) {multp_singc_share *ptr = arg;for(;;){lsem_wait(&(ptr->nempty));lsem_wait(&(ptr->lock));if(ptr->i >= ptr->items){lsem_post(&(ptr->lock));lsem_post(&(ptr->nempty));return NULL;}ptr->buff[ptr->i % BUFF_SIZE] = rand() % 100;printf("produce %d at %d\n", ptr->buff[ptr->i * BUFF_SIZE], ptr->i % BUFF_SIZE);ptr->i++;lsem_post(&ptr->lock);lsem_post(&ptr->nstored);} }void* multp_singc_consume(void *arg) {multp_singc_share *ptr = arg;for(int i = 0;i < ptr->items;i ++){lsem_wait(&(ptr->nstored));lsem_wait(&(ptr->lock));printf("consume %d at %d\n", ptr->buff[i % BUFF_SIZE], i % BUFF_SIZE);lsem_post(&(ptr->lock));lsem_post(&(ptr->nempty));} }void multp_singc_test() {multp_singc_share arg;pthread_t pro_th[THREAD_SIZE], con_th;arg.items = 10;arg.i = 0;memset(arg.buff, 0, BUFF_SIZE * sizeof(int));lsem_init(&(arg.lock), 0, 1);lsem_init(&(arg.nempty), 0, BUFF_SIZE);lsem_init(&(arg.nstored), 0, 0);pthread_setconcurrency(THREAD_SIZE + 1); for(int i = 0;i < THREAD_SIZE;i ++){lpthread_create(&pro_th[i], NULL, multp_singc_produce, &arg);}lpthread_create(&con_th, NULL, multp_singc_consume, &arg);for(int i = 0;i < THREAD_SIZE;i ++){lpthread_join(pro_th[i], NULL);}lpthread_join(con_th, NULL);lsem_destroy(&(arg.lock));lsem_destroy(&(arg.nempty));lsem_destroy(&(arg.nstored)); } ? build git:(master) ? ./main produce 83 at 0 produce 0 at 1 produce 0 at 2 produce 0 at 3 consume 83 at 0 consume 86 at 1 produce 48 at 4 produce 127 at 0 produce 64 at 1 consume 77 at 2 consume 15 at 3 produce 0 at 2 consume 93 at 4 consume 35 at 0 produce -4 at 3 produce 31 at 4 consume 86 at 1 consume 92 at 2 consume 49 at 3 consume 21 at 42.3.2 多生產者多消費者
??多個生產者和消費者互相產生和讀取數據。
typedef struct multp_multc_share {int pi;int ci;sem_t nempty;sem_t nstored;sem_t lock;int items;char buff[BUFF_SIZE]; }multp_multc_share;void* multp_multc_produce(void *arg) {multp_multc_share *ptr = arg;for(;;){lsem_wait(&(ptr->nempty));lsem_wait(&(ptr->lock));if(ptr->pi >= ptr->items){lsem_post(&(ptr->nstored));lsem_post(&(ptr->nempty));lsem_post(&(ptr->lock));return NULL;}ptr->buff[ptr->pi % BUFF_SIZE] = rand() % 100;printf("produce %d at %d\n", ptr->buff[ptr->pi * BUFF_SIZE], ptr->pi % BUFF_SIZE);ptr->pi++;lsem_post(&ptr->lock);lsem_post(&ptr->nstored);} }void* multp_multc_consume(void *arg) {multp_multc_share *ptr = arg;for(;;){lsem_wait(&(ptr->nstored));lsem_wait(&(ptr->lock));if(ptr->ci >= ptr->items){lsem_post(&(ptr->nstored));lsem_post(&(ptr->lock));return NULL;}printf("consume %d at %d\n", ptr->buff[ptr->ci % BUFF_SIZE], ptr->ci % BUFF_SIZE);ptr->ci++;lsem_post(&(ptr->lock));lsem_post(&(ptr->nempty));} }void multp_multc_test() {multp_multc_share arg;pthread_t pro_th[THREAD_SIZE], con_th[THREAD_SIZE];arg.items = 10;arg.pi = 0;arg.ci = 0;memset(arg.buff, 0, BUFF_SIZE * sizeof(int));lsem_init(&(arg.lock), 0, 1);lsem_init(&(arg.nempty), 0, BUFF_SIZE);lsem_init(&(arg.nstored), 0, 0);pthread_setconcurrency(THREAD_SIZE + 1); for(int i = 0;i < THREAD_SIZE;i ++){lpthread_create(&pro_th[i], NULL, multp_multc_produce, &arg);}for(int i = 0;i < THREAD_SIZE;i ++){lpthread_create(&con_th[i], NULL, multp_multc_consume, &arg);}for(int i = 0;i < THREAD_SIZE;i ++){lpthread_join(pro_th[i], NULL);}for(int i = 0;i < THREAD_SIZE;i ++){lpthread_join(con_th[i], NULL);}lsem_destroy(&(arg.lock));lsem_destroy(&(arg.nempty));lsem_destroy(&(arg.nstored)); } ? build git:(master) ? ./main produce 83 at 0 produce 0 at 1 produce 0 at 2 produce 0 at 3 consume 83 at 0 consume 86 at 1 consume 77 at 2 produce 1 at 4 produce 0 at 0 produce 0 at 1 produce 0 at 2 consume 15 at 3 consume 93 at 4 consume 35 at 0 consume 86 at 1 produce -2 at 3 consume 92 at 2 produce 98 at 4 consume 49 at 3 consume 21 at 42.3.3 多緩沖讀取
??通過多緩沖將數據從一個文件寫入到另一個文件。
typedef struct {struct {char buff[MAX_LEN + 1];int len;}buff[BUFF_SIZE];sem_t lock;sem_t nempty;sem_t nstored;int items;int readfd;int writefd; }wr_share;//將buffer中的數據寫入文件 void *write_buff(void *arg) {wr_share* ptr = arg;int i = 0;while(1){lsem_wait(&ptr->lock);//獲取當前緩沖區的操作lsem_post(&ptr->lock);lsem_wait(&ptr->nstored);lwrite(ptr->writefd, ptr->buff[i].buff, ptr->buff[i].len);lwrite(STDOUT_FILENO, ptr->buff[i].buff, ptr->buff[i].len);i++;if(i >= ptr->items){i = 0;}lsem_post(&ptr->nempty);} }//從文件中讀取數據 void *read_buff(void *arg) {wr_share* ptr = arg;int i = 0;while(1){lsem_wait(&ptr->lock);//獲取當前緩沖區的操作lsem_post(&ptr->lock);lsem_wait(&ptr->nempty);int n = lread(ptr->readfd, ptr->buff[i].buff, MAX_LEN);ptr->buff[i].len = n;i++;if(i >= ptr->items){i = 0;}lsem_post(&ptr->nstored);} }void read_write_test() {wr_share arg;arg.items = BUFF_SIZE;#if 0char *readfile = "build/CMakeCache.txt";char *writefile = "build/mktmp";#elsechar *readfile = "CMakeCache.txt";char *writefile = "mktmp";#endifarg.readfd = lopen(readfile, O_RDONLY);arg.writefd = lopen(writefile, O_WRONLY | O_CREAT);lsem_init(&arg.lock, 0, 1);lsem_init(&arg.nempty, 0, arg.items);lsem_init(&arg.nstored, 0, 0);pthread_t read_th, write_th;lpthread_create(&read_th, 0, read_buff, &arg);lpthread_create(&write_th, 0, write_buff, &arg);lpthread_join(read_th, NULL);lpthread_join(write_th, NULL);lsem_destroy(&arg.lock);lsem_destroy(&arg.nempty);lsem_destroy(&arg.nstored); }3 System V信號量
3.1 System V信號量
??上面提到的Posix信號量有二值信號量和計數信號量,而System V信號量是信號量集,即一個或者多個信號量構成的集合,這個集合中的信號量都是計數信號量。
??對于信號量集,內核維護的信息結構如下:
??上面的第一個結構是書上提到的,下面的第二個結構是我主機上的結構,我猜測原理都差不多只是實現進行了修改,因此以書本上的描述為主。
- sem_perm:用戶的操作權限;
- sem_nsems:當前數據結構中信號量的數量;
- sem_otime:上一次調用apisem_op的時間;
- sem_ctime:信號量創建的時間或上次調用IPC_SET的時間。
- semget:創建一個或者訪問一個已經存在的信號量集;
- key:鍵值;
- nsems:希望初始化的信號量數目,初始化之后不可修改,如果只是訪問已經存在的信號量集則設為0;
- semflg:可以為SEM_R,SEM_A分別表示讀和修改,也可以為IPC_CREAT, IPC_EXCL;
- 返回值為信號量的標識符的整數;
- 當創建新的信號量時,用戶權限,讀寫權限,創建時間,信號量的數目都會設置,但是結構中的數組,即各個信號量并不會初始化。這本身是不安全的,即便創建之后立即初始化,因為操作是非原子性的,無法保證絕對的安全;
- semop:操作信號量集,內核能夠保證當前操作的原子性;
- semid:通過sem_get獲得的信號量標識符;
- sops:是一個如下結構數據的數組,因為有些系統不會定義該結構,因此有些時候需要用戶自己定義:struct sembuf
{
unsigned short int sem_num; /* semaphore number */
short int sem_op; /* semaphore operation */
short int sem_flg; /* operation flag */
};
- sem_num:需要操作的信號量在信號量集中的下標;
- sem_flg:進行操作的設置:
- 0;
- IPC_NOWAIT:不阻塞;
- SEM_UNDO;
- sem_op:具體的操作方式
- sem_op > 0:
- 未設置SEM_UNDO:將當前值加到sem_val上,即sem_val += sem_op,等同于V操作,只不過釋放線程量可能大于1;
- 設置SEM_UNDO:從相應的信號量的進程調整值(由內核維護)中減去sem_op;
- sem_op == 0:調用者希望sem_val==0:
- 如果sem_val == 0:立即返回;
- 如果sem_val != 0:對應信號量的semzcnt += 1,阻塞至為0為止,除非設置了IPC_NOWAIT,則不阻塞直接返回錯誤;
- sem_op < 0:調用者希望等待sem_val >= |sem_op|用于等待資源:
- 如果sem_val >= |sem_op|,則sem_val -= |sem_op|,若設置了SEM_UNDO,則將|sem_op|加到對應信號量的進程調整值上;
- 如果sem_val < |sem_op|,則相應信號量的semncnt += 1,線程被阻塞到滿足條件為止。等到解阻塞時semval-=|sem_op,并且semncnt -= 1,如果制定了SEM_UNDO則sem_op的絕對值加到對應信號量的調整值上。如果指定了IPC_NOWAIT則線程不會阻塞。
- 如果一個被捕獲的信號喚醒了sem_op或者信號量被刪除,則該函數會過早的返回一個錯誤。
- sem_op > 0:
- semctl:控制信號量集;
- semid:信號量集的標識符;
- semnum:要操作的信號量的標號;
- cmd:命令;
- GETVAL:semval作為返回值返回,-1表示失敗;
- SETVAL:semval設置為arg.val,成功的話相應信號量在進程中的信號量調整值會設置為0;
- GETPID:返回sempid;
- GETNCNT:返回semncnt;
- GETZCNT:返回semzcnt;
- GETALL:返回所有信號量的semval,存入arg.array;
- SETALL:按照arg.array設置所有信號量的semval;
- IPC_RMID:刪除指定信號量集;
- IPC_SET:根據arg.buf設置信號量集的sem_perm.uid,sem_perm.gid,sem_perm.mode;
- IPC_STAT:返回當前信號量集的semid_ds結構,存入arg.buf,空間需要用戶分配。
- arg:可選,根據cmd指定。
??存在的一些限制:
- semmni:系統范圍內最大信號量集數;
- semmsl:每個信號量集最大信號量數;
- semmns:系統范圍內最大信號量數;
- semopm:每個semop調用最大操作數;
- semmnu:系統范圍內最大復舊結構數;
- semume:每個復舊結構最大復舊項數;
- semvmx:任何信號量的最大值;
- semaem:最大退出時調整值。
3.2 示例
int vsem_create(key_t key) {int semid = lsemget(key, 1, 0666 | IPC_CREAT | IPC_EXCL);return semid; }int vsem_open(key_t key) {int semid = lsemget(key, 0, 0);//創建一個信號量集 return semid; }int vsem_p(int semid)// {struct sembuf sb = {0, -1, /*IPC_NOWAIT*/SEM_UNDO};//對信號量集中第一個信號進行操作,對信號量的計數值減1,lsemop(semid, &sb, 1);//用來進行P操作 return 0; }int vsem_v(int semid) {struct sembuf sb = {0, 1, /*0*/SEM_UNDO};lsemop(semid, &sb, 1);return 0; }int vsem_d(int semid) {int ret = semctl(semid, 0, IPC_RMID, 0);//刪除一個信號量集return ret; }int vsem_setval(int semid, int val) {union semun su;su.val = val;semctl(semid, 0, SETVAL, &su);//給信號量計數值printf("value updated...\n");return 0; }int vsem_getval(int semid)//獲取信號量集中信號量的計數值 {int ret = semctl(semid, 0, GETVAL, 0);//返回值是信號量集中printf("current val is %d\n", ret);return ret; }int vsem_getmode(int semid) {union semun su;struct semid_ds sem;su.buf = &sem;semctl(semid, 0, IPC_STAT, su);printf("current permissions is %o\n", su.buf->sem_perm.mode);return 0; }int vsem_setmode(int semid, char *mode) {union semun su;struct semid_ds sem;su.buf = &sem;semctl(semid, 0, IPC_STAT, su);printf("current permissions is %o\n", su.buf->sem_perm.mode);sscanf(mode, "%o", (unsigned int *)&su.buf->sem_perm.mode);semctl(semid, 0, IPC_SET, &su);printf("permissions updated...\n");return 0; }void usage(void) {fprintf(stderr, "usage:\n");fprintf(stderr, "semtool -c\n");fprintf(stderr, "semtool -d\n");fprintf(stderr, "semtool -p\n");fprintf(stderr, "semtool -v\n");fprintf(stderr, "semtool -s <val>\n");fprintf(stderr, "semtool -g\n");fprintf(stderr, "semtool -f\n");fprintf(stderr, "semtool -m <mode>\n"); }void v_test(int argc, char *argv[]) {int opt;opt = getopt(argc, argv, "cdpvs:gfm:");//解析參數if (opt == '?')exit(EXIT_FAILURE);if (opt == -1){usage();exit(EXIT_FAILURE);}key_t key = ftok(".", 's');int semid;switch (opt){case 'c'://創建信號量集vsem_create(key);break;case 'p'://p操作semid = vsem_open(key);vsem_p(semid);vsem_getval(semid);break;case 'v'://v操作semid = vsem_open(key);vsem_v(semid);vsem_getval(semid);break;case 'd'://刪除一個信號量集semid = vsem_open(key);vsem_d(semid);break;case 's'://對信號量集中信號量設置初始計數值semid = vsem_open(key);vsem_setval(semid, atoi(optarg));break;case 'g'://獲取信號量集中信號量的計數值semid = vsem_open(key);vsem_getval(semid);break;case 'f'://查看信號量集中信號量的權限semid = vsem_open(key);vsem_getmode(semid);break;case 'm'://更改權限semid = vsem_open(key);vsem_setmode(semid, argv[2]);break;}return; }總結
以上是生活随笔為你收集整理的Linux进程通信之信号量的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: java 关机命令_(windows )
- 下一篇: mysql8忘记密码后重置密码