日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 >

HMM、MEMM、CRF模型的比较

發(fā)布時間:2023/12/31 39 豆豆
生活随笔 收集整理的這篇文章主要介紹了 HMM、MEMM、CRF模型的比较 小編覺得挺不錯的,現(xiàn)在分享給大家,幫大家做個參考.

一、HMM


HMM屬于生成模型,模型中2個假設(shè):

  • 輸出觀測值XiX_iXi?之間相互獨立;
  • 齊次一階Markov,即狀態(tài)的轉(zhuǎn)移過程中當(dāng)前狀態(tài)只與前一狀態(tài)有關(guān)。

二、MEMM


P(I∣O)=∏t=1nexp?(∑a)λafa(o,i)Z(o,ii?1),i=1,?,nP(I | O)=\prod_{t=1}^{n} \frac{\exp \left(\sum_{a}\right) \lambda_{a} f_{a}(o, i)}{Z\left(o, i_{i-1}\right)}, i=1, \cdots, n P(IO)=t=1n?Z(o,ii?1?)exp(a?)λa?fa?(o,i)?,i=1,?,n
求和的作用在概率中是歸一化,但是這里歸一化放在了指數(shù)內(nèi)部,管這叫l(wèi)ocal歸一化。 來了,viterbi求解過程,是用dp的狀態(tài)轉(zhuǎn)移公式(MEMM的沒展開,請參考CRF下面的公式),因為是局部歸一化,所以MEMM的viterbi的轉(zhuǎn)移公式的第二部分出現(xiàn)了問題,導(dǎo)致dp無法正確的遞歸到全局的最優(yōu)。
δi+1=max?1≤j≤m{δi(I)+∑iT∑kMλkfk(O,Ii?1,Ii,i)}\delta_{i+1}=\max _{1 \leq j \leq m}\left\{\delta_{i}(I)+\sum_{i}^{T} \sum_{k}^{M} \lambda_{k} f_{k}\left(O, I_{i-1}, I_{i}, i\right)\right\} δi+1?=1jmmax?{δi?(I)+iT?kM?λk?fk?(O,Ii?1?,Ii?,i)}

  • MEMM模型屬于判別模型,打破了觀察值之間相互獨立產(chǎn)生的問題,但是由于狀態(tài)之間的假設(shè)理論,MEMM傾向于選擇擁有更少轉(zhuǎn)移的狀態(tài),使得該模型存在 標(biāo)注偏置問題(label bias problem)

三、CRF(Conditional Random Field)


從概率圖可以很形象的看出一個區(qū)別:
HMM是有向圖,嚴格定義了y的有序性,只能從左至右。CRF是無向圖,y無序,可左可右。HMM是生成模型,通過求聯(lián)合概率獲得;CRF是判別模型,通過條件概率求得。在如詞性標(biāo)注上的應(yīng)用中CRF更合理,因為它直接求某個標(biāo)注的概率,而HMM需要先算聯(lián)合概率再轉(zhuǎn)而求目標(biāo)的概率。
對于所謂的條件隨機場的理解:

  • 條件:屬于生成模型
  • 隨機場:無向圖模型
    CRF模型屬于判別模型,解決了標(biāo)注偏置問題,去除了HMM中兩個不合理的假設(shè),當(dāng)然,模型相應(yīng)得也變復(fù)雜了。
    CRF建模公式如下,整個過程的推導(dǎo)可以結(jié)合這個詞性標(biāo)注的案例更好理解 :CRF詞性標(biāo)注:
    P(I∣O)=1Z(O)∏iψi(Ii∣O)=1Z(O)∏ie∑kλkfk(O,li?1,Ii,i)=1Z(O)e∑i∑kλkfk(O,Ii?1,Ii,i)P(I | O)=\frac{1}{Z(O)} \prod_{i} \psi_{i}\left(I_{i} | O\right)=\frac{1}{Z(O)} \prod_{i} e^{\sum_{k} \lambda_{k} f_{k}\left(O, l_{i-1}, I_{i}, i\right)}=\frac{1}{Z(O)} e^{\sum_{i} \sum_{k} \lambda_{k} f_{k}\left(O, I_{i-1}, I_{i}, i\right)} P(IO)=Z(O)1?i?ψi?(Ii?O)=Z(O)1?i?ek?λk?fk?(O,li?1?,Ii?,i)=Z(O)1?ei?k?λk?fk?(O,Ii?1?,Ii?,i)
    因為是判別模型,所以直接為了確定邊界而去建模,因為創(chuàng)造出來就是為了這個分邊界的目的。比如說序列求概率(分類)問題,直接考慮找出函數(shù)分類邊界。所以才為什么會有這個公式。所以再看到這個公式也別懵逼了。

除了建模總公式,關(guān)鍵的CRF重點概念與MEMM類似:判別式模型、特征函數(shù)。

總結(jié)

以上是生活随笔為你收集整理的HMM、MEMM、CRF模型的比较的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯,歡迎將生活随笔推薦給好友。