2020美赛F奖论文(一):摘要、绪论和模型准备
全文:
- 2020美賽F獎?wù)撐?#xff08;一):摘要、緒論和模型準(zhǔn)備
- 2020美賽F獎?wù)撐?#xff08;二):傳球網(wǎng)絡(luò)模型(PNM)的建立和影響因子分析
- 2020美賽F獎?wù)撐?#xff08;三):足球團(tuán)隊(duì)指標(biāo)和基于機(jī)器學(xué)習(xí)的球隊(duì)表現(xiàn)預(yù)測
- 2020美賽F獎?wù)撐?#xff08;四):模擬退火算法驅(qū)動的結(jié)構(gòu)策略設(shè)計(jì)
- 2020美賽F獎?wù)撐?#xff08;五):結(jié)合團(tuán)隊(duì)動力學(xué)的模型拓展、模型評價(jià)
Soccer Teamwork Evaluation Models
足球團(tuán)隊(duì)合作評價(jià)模型
- 2020MCM-ICM ProblemD
- Finalist 方案
2020年美國大學(xué)生數(shù)學(xué)建模競賽ICM-D題 特等獎提名
GitHub倉庫
Summary
- This paper proposes a method, with graph theory, probability theory and calculus, to build machine learning models based on data analysis, which aims at providing strategies for soccer coach’s lineup arrangement and players’ training.
本文利用圖論,概率論和微積分的方法,利用數(shù)據(jù)分析和建立機(jī)器學(xué)習(xí)模型,為足球教練的陣容安排和球員訓(xùn)練提供策略。
- Firstly, the Pass Network Model can be established according to the graph theory, whose edge-weights are evaluation of coordination degree of each dyadic configurations. Pass Evaluate Index is designed for evaluate a single pass, and the summation of each pass can be defined as the edge-weights of PNM. For analysis, the adjacency matrix of N participating players within a period. Several outstanding M configurations can be found by the sort of M-element combination with the key of the sum of the sub-complete graph edge weights. What’s more, investigation of the influence of time on pass density depends on the constructed and approximate function of time and pass.
Firstly,根據(jù)圖論,在球員之間建立傳球網(wǎng)絡(luò),并建立單次傳球的價(jià)值評價(jià)模型,用于評價(jià)兩兩球員間傳球的配合程度,即傳球網(wǎng)絡(luò)的邊權(quán)。建立在一定時(shí)間范圍內(nèi)所有參與比賽的N個(gè)球員的鄰接矩陣,通過以M個(gè)點(diǎn)的子完全圖邊權(quán)之和為排序關(guān)鍵字找出若干組優(yōu)秀的M元組合。同時(shí)建立基于時(shí)間尺度的價(jià)值模型,用于評價(jià)時(shí)間對傳球效率的影響。
- Secondly, performance indicators that reflect successful teamwork can be divided into dynamic indicators and static indicators. Static indicators include player position arrangement and line-up with which player season heatmap models and player position models can be established while the dynamic indicators include opponents’ strength, side, coach, passes, defense, attack and fail. etc. After visualized analysis of the correlation between the dynamic indicators extracted after data cleaning, and with the setting label by the goal difference, the random forest classifier, a machine learning model, is used as a evaluation model of dynamic indicators. After the Grid Search used for tuning parameters, and cross-validation, the accuracy of the model achieving 80% approximately.
Secondly,我們將反映成功團(tuán)隊(duì)合作的績效指標(biāo)劃分為靜態(tài)指標(biāo)和動態(tài)指標(biāo)。靜態(tài)指標(biāo)包括球員位置安排和球隊(duì)陣型(line-up),我們建立球員賽季熱點(diǎn)模型和球員分布模型。動態(tài)指標(biāo)包括opponents,side,coach,passes,defence,attack and fail等。對經(jīng)過數(shù)據(jù)清洗動態(tài)指標(biāo)之間通過可視化進(jìn)行相關(guān)性分析后,以凈勝球分類作為比賽樣本標(biāo)簽,以隨機(jī)森林分類器作為機(jī)器學(xué)習(xí)的模型,用網(wǎng)格搜索調(diào)優(yōu)參數(shù),建立動態(tài)指標(biāo)評價(jià)模型,進(jìn)行交叉驗(yàn)證,達(dá)到了80%的準(zhǔn)確率。
- Thirdly, the study focuses on the role of static indicators in the performance of the team and establishes different players’ value evaluation models in different positions which comprehensively consider the player’s positions and technical statistical data evaluation. To optimize the value of 11-person permutation, we choose simulated annealing (SA) algorithm which searches the global optimal solution in cousin points in the same minimized search tree after the local optimal solution has attained. The model finally gave the best starting lineup formation. In addition, we also consider the following three secondary factors: tacit understanding between players, home and away influence, and coaching arrangements. All analysis above can be concluded as comprehensive suggestion to the coach.
Thirdly,通過上述中建立的模型進(jìn)行觀察分析,我們著重研究靜態(tài)指標(biāo)對球隊(duì)的勝利起到的關(guān)鍵作用,綜合考慮球員位置和技術(shù)數(shù)據(jù)評價(jià)模型,建立不同球員在不同位置價(jià)值評價(jià)模型。通過模擬退火算法,優(yōu)化11人排列組合的考慮,在局部最優(yōu)解的父級搜索樹進(jìn)行搜索全局最優(yōu)解,最終給出價(jià)值最優(yōu)的首發(fā)陣容陣型圖。此外我們還考慮以下三個(gè)次要影響因素:球員間默契度,主客場影響和教練安排。給教練提出的綜合建議。
- Finally, we use the case of the Huskies to explain group dynamics. And use the conclusions obtained by the Huskies to build a model to explain how to design a more effective team and supplement the team performance indicators.
Finally,我們用哈士奇球隊(duì)的案例來解釋群體動力學(xué)。并用哈士奇球隊(duì)建立模型得到的結(jié)論來說明如何設(shè)計(jì)更有效的團(tuán)隊(duì),并對團(tuán)隊(duì)績效指標(biāo)進(jìn)行補(bǔ)充。
Key words: Network; Graph theory; Calculus; Machine learning; Random forest classifier; Simulated annealing; Heat map; Group dynamics
0 Content
1 Introduction 3
- 1.1 Background 3
- 1.2 Problem Restatement 3
2 Preparation of the Models 3
- 2.1 Processing Tools 3
- 2.2 Data Cleaning 4
3 Establishment of PNM and Analysis of Influence Factors 4
- 3.1 Pass Evaluation Index (PEI) 4
- 3.2 Pass Network Model (PNM) and Recognition of Network Pattern 6
- 3.3 Fluctuation of Passing State at The Time 6
4 Soccer Team Indexes and Performance Prediction Based on ML 7
- 4.1 Static Index (SI) 8
- 4.2 Dynamic Index (DI) 9
- 4.2.1 Data Cleaning and Feature Engineering 9
- 4.2.2 Visualization Analysis 9
- 4.2.3 RFC Establishment, Optimization, and Training 12
5 Design of Structural Strategies Driven by SA 13
- 5.1 Position Evaluation Engineering (PEE) 13
- 5.2 Optimization of Permutation and Combination Based on SA Algorithm 14
- 5.3 Other Structural Strategy Factors 15
- 5.4 Structural Strategy Conclusion 16
6 Model Extension Combined with Group Dynamics 16
- 6.1 Group and Soccer Team 17
- 6.1.1 Group Cohesiveness 17
- 6.1.2 Group Standard and Group Pressure 17
- 6.1.3 Individual Motivation and Group Goals 17
- 6.1.4 Leadership and Group Performance 18
- 6.1.5 Group Structure 18
- 6.2 Other influence factor of successful teamwork 18
7 Evaluation 18
- 7.1 Strength 18
- 7.2 Weakness 19
8 Reference 19
0 目錄
1 緒論 3
- 1.1 背景 3
- 1.2 問題重述 3
2 模型準(zhǔn)備 3
- 2.1 預(yù)處理工具 3
- 2.2 數(shù)據(jù)清洗 4
3 傳球網(wǎng)絡(luò)模型(PNM)的建立和影響因子分析 4
- 3.1 傳球評價(jià)指標(biāo) (PEI) 4
- 3.2 傳球網(wǎng)絡(luò)模型(PNM)構(gòu)建及識別網(wǎng)絡(luò)模式 6
- 3.3 時(shí)間尺度上傳球狀態(tài)波動 6
4 足球團(tuán)隊(duì)指標(biāo)和基于機(jī)器學(xué)習(xí)的球隊(duì)表現(xiàn)預(yù)測 7
- 4.1 靜態(tài)指標(biāo) (SI) 8
- 4.2 動態(tài)指標(biāo) (DI) 9
- 4.2.1 數(shù)據(jù)清洗和特征工程 9
- 4.2.2 可視化分析 9
- 4.2.3 隨機(jī)森立分類器模型的建立、參數(shù)調(diào)優(yōu)和訓(xùn)練 12
5 模擬退火算法驅(qū)動的結(jié)構(gòu)策略設(shè)計(jì) 13
- 5.1 位置評價(jià)工程(PEE) 13
- 5.2 基于SA算法優(yōu)化排列組合 14
- 5.3 其他結(jié)構(gòu)策略因素 15
- 5.4 結(jié)構(gòu)性策略總結(jié) 16
6 結(jié)合團(tuán)隊(duì)動力學(xué)的模型拓展 16
- 6.1 團(tuán)體動力學(xué)和足球隊(duì) 17
- 6.1.1 群體內(nèi)聚力 17
- 6.1.2 群體標(biāo)準(zhǔn)和群體壓力 17
- 6.1.3 個(gè)人動機(jī)和群體目標(biāo) 17
- 6.1.4 領(lǐng)導(dǎo)與群體性能 18
- 6.1.5 群體的結(jié)構(gòu)性 18
- 6.2 成功團(tuán)隊(duì)合作其他影響因素 18
7 評價(jià) 18
- 7.1 優(yōu)勢 18
- 7.2 缺陷 19
8 參考文獻(xiàn) 19
1 緒論 Introduction
1.1 背景 Background
Football has a long history. It has been loved all over the world since it was popularized. Football can be considered as the most popular sports in the world. Football, a seemingly simple sport, contains the secrets of individual ability and team cooperation. With the development of the times and the progress of science and technology, football players and coaches continue to improve in skills, showing the audience wonderful matches. As we all know, a wonderful football match is inseparable from the contributions of players and teams. By studying the actions of everyone in the team, coordinating the team relationship, reasonably arranging the minutes and line-up, we can score best.
略
1.2 問題重述 Problem Restatement
Football is a sport suitable for all ages. Since its inclusion in international tournaments, people have created a variety of methods to evaluate the team dynamics throughout the match and over the entire season to help determine specific strategies that can improve teamwork next season. We need to use the data provided by the ICM team to build a model to solve the following four problems.
足球賽是一項(xiàng)老少皆宜的運(yùn)動,自從其納入國際賽事以來,人們就創(chuàng)造出各種各樣的方法來評價(jià)整個(gè)比賽和整個(gè)賽季的團(tuán)隊(duì)動態(tài),來幫助確定下個(gè)賽季可以改善團(tuán)隊(duì)合作的具體策略。我們需要使用ICM團(tuán)隊(duì)提供的數(shù)據(jù)建立模型來解決以下四個(gè)問題。
2 模型準(zhǔn)備 Preparation of the Models
2.1 預(yù)處理工具 Processing Tools
| Visual Studio Code 1.42 | Coding, Visualization |
| IPython 3.6.8 | Run Code |
| Visio | Design Flowchart |
| Excel | Arrange Dataset |
| GitHub | Synchronization, Storing |
| MindMaster | Plot Mind Map |
2.2 數(shù)據(jù)清洗 Data Cleaning
若空白則為上一個(gè)相同
| Side | Map + Dummy | Side_1, Side_0 |
| Coach | Dummy | Coach_1, Coach_2, Coach_3 |
| Opponent Strength | Analysis | Oppo |
| Shots | Count | Attack |
| Dribbles | ||
| Touch | ||
| Corner | ||
| Offside | ||
| Tackle | Count | Defence |
| Dispossess | ||
| Aerial Won | ||
| Interception | ||
| Clearance | ||
| Blocks | ||
| Saves | ||
| Passes | Count | Pass |
| Possession | Search + Integrate | |
| Pass Success | Calculate | |
| Foul | Count | Fail |
| Loss of Possession | Search + Count |
后接:2020美賽F獎?wù)撐?#xff08;二):傳球網(wǎng)絡(luò)模型(PNM)的建立和影響因子分析
全文:
- 2020美賽F獎?wù)撐?#xff08;一):摘要、緒論和模型準(zhǔn)備
- 2020美賽F獎?wù)撐?#xff08;二):傳球網(wǎng)絡(luò)模型(PNM)的建立和影響因子分析
- 2020美賽F獎?wù)撐?#xff08;三):足球團(tuán)隊(duì)指標(biāo)和基于機(jī)器學(xué)習(xí)的球隊(duì)表現(xiàn)預(yù)測
- 2020美賽F獎?wù)撐?#xff08;四):模擬退火算法驅(qū)動的結(jié)構(gòu)策略設(shè)計(jì)
- 2020美賽F獎?wù)撐?#xff08;五):結(jié)合團(tuán)隊(duì)動力學(xué)的模型拓展、模型評價(jià)
總結(jié)
以上是生活随笔為你收集整理的2020美赛F奖论文(一):摘要、绪论和模型准备的全部內(nèi)容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: 医学DICOM文件解析(笔记整理)
- 下一篇: 十大经典排序算法