日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

opencv实现超像素分割(slic实现)

發布時間:2023/12/31 编程问答 26 豆豆
生活随笔 收集整理的這篇文章主要介紹了 opencv实现超像素分割(slic实现) 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

實現效果圖:

同時還使用了 mask圖,要識別的區域為白色,背景為黑色

import cv2 import numpy as np import os.path as osp import os import numpy as np from tqdm import tqdm from skimage import morphology from skimage import segmentationdef get_ori_list(ori_folder):img_list = os.listdir(ori_folder)ori_list = []for img_name in img_list:flag = 0 for sample in check_list:if sample in img_name:flag=1breakif flag==0:ori_list.append(osp.join(ori_folder,img_name))if len(ori_list)>20:breakreturn ori_listcheck_list = ['copper','bg','check','dust'] """超像素由一系列位置相鄰且顏色、亮度、紋理等特征相似的像素點組成的小區域。 這些小區域大多保留了進一步進行圖像分割的有效信息,且一般不會破壞圖像中物體的邊界信息, 用少量的超像素代替大量像素表達圖像特征,降低了圖像處理的復雜度, 一般作為分割算法的預處理步驟。"""def get_reverse(pic_matrix):where_0 = np.where(pic_matrix == 0)where_255 = np.where(pic_matrix == 255)pic_matrix[where_0] = 255pic_matrix[where_255] = 0return pic_matrixdef use_slic_by_SLIC(img_path,mask_path,end_path):"""https://scikit-image.org/docs/dev/auto_examples/segmentation/plot_mask_slic.html#sphx-glr-auto-examples-segmentation-plot-mask-slic-py"""image = cv2.imread(img_path)#image = cv2.resize(image,(256,256))mask_image = cv2.imread(mask_path)#mask_image = get_reverse(mask_image)# kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2))# mask_image = cv2.dilate(mask_image, kernel)#mask_image = cv2.resize(mask_image,(256,256))img_R = mask_image[:,:,0]mask = img_R>220# 生成扁平的盤狀結構元素 skimage.morphology.diskmask = morphology.opening(mask, morphology.disk(10))#mask是一個只包含True和False的ndarray,它的shape和data一致,# segmentation.slic在Color-(x,y,z)空間中使用k-means聚類來分割圖像。m_slic = segmentation.slic(image, n_segments=20000, mask=mask)slic_image = segmentation.mark_boundaries(image, m_slic,outline_color=(0,1,1))cv2.imwrite(end_path,slic_image*255) return slic_image*255if __name__ == '__main__':ori_folder = '/cloud_disk/users/huh/dataset/PCB/ddrnet_23_slim/pre_process_img'end_folder = '/cloud_disk/users/huh/pcb/script/slic_result/1_cv2'ori_list = get_ori_list(ori_folder)for img_path in tqdm(ori_list):end_path = osp.join(end_folder,osp.basename(img_path))mask_path = osp.join(ori_folder,osp.basename(img_path[:-4])+'_bg_mask.jpg')try:slic_image = use_slic_by_SLIC(img_path,mask_path,end_path)# slic_image = cv2.imread(osp.join('/cloud_disk/users/huh/pcb/script/slic_result/1_without_small',osp.basename(img_path)))#slic_image = cv2.resize(slic_image,(512,512))#remove_small_objects(mask_path,end_path,img_path,slic_image)except ValueError:print(end_path)

總結

以上是生活随笔為你收集整理的opencv实现超像素分割(slic实现)的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。