【更新中…】Latex语法总结
Latex語法
- 1 花體字母
- 2 常用數學符號
- 3 常用數學字母
- 4 矩陣的表示
- 5 連加和連乘
- 6 Latex公式的格式設置
- 6.1 換行對齊
- 6.2 公式帶編號
1 花體字母
$\mathbb{R}$$\mathcal{R}$$\mathscr{R}$效果分別是
A,R,S,P\mathbb{A} ,\mathbb{R}, \mathbb{S}, \mathbb{P}A,R,S,P
A,R,S,P\mathcal{A},\mathcal{R}, \mathcal{S}, \mathcal{P}A,R,S,P
A,R,S,P\mathscr{A},\mathscr{R},\mathscr{S},\mathscr{P}A,R,S,P
2 常用數學符號
| 任意 | \forall | ?\forall? | 存在 | \exists | ?\exists? |
| 無窮 | \infty | ∞\infty∞ | 屬于 | \in | ∈\in∈ |
| 左箭頭 | \leftarrow | ←\leftarrow← | 右箭頭 | \rightarrow | →\rightarrow→ |
| 上箭頭 | \uparrow | ↑\uparrow↑ | 下箭頭 | downarrow | ↓\downarrow↓ |
| 兩端箭頭 | \leftrightarrow | ?\leftrightarrow? |
3 常用數學字母
| 派 | \pi | π\piπ | 阿爾法 | \alpha | α\alphaα |
| 貝塔 | \beta | β\betaβ | 伽馬 | \gamma | γ\gammaγ |
4 矩陣的表示
參見https://blog.csdn.net/qq_38228254/article/details/79469727
5 連加和連乘
\sum_{i=1}^{n}效果:
∑i=1n\sum_{i=1}^{n}i=1∑n?
\prod_{i=1}^{n}效果:
∏i=1n\prod_{i=1}^{n}i=1∏n?
其中
_后面加的是下標,^后面加的是上標
6 Latex公式的格式設置
6.1 換行對齊
$$ \begin{aligned} V_\pi(s)=&G_{t1}·P(a_1)·p_1+G_{t2}·P(a_1)·p_2+G_{t3}·P(a_1)·p_3+\\ &G_{t4}·P(a_2)·p_4+G_{t5}·P(a_2)·p_5+G_{t6}·P(a_2)·p_6+\\ &G_{t7}·P(a_3)·p_7+G_{t8}·P(a_3)·p_8+G_{t9}·P(a_3)·p_9 \end{aligned} $$效果:
Vπ(s)=Gt1?P(a1)?p1+Gt2?P(a1)?p2+Gt3?P(a1)?p3+Gt4?P(a2)?p4+Gt5?P(a2)?p5+Gt6?P(a2)?p6+Gt7?P(a3)?p7+Gt8?P(a3)?p8+Gt9?P(a3)?p9\begin{aligned} V_\pi(s)=&G_{t1}·P(a_1)·p_1+G_{t2}·P(a_1)·p_2+G_{t3}·P(a_1)·p_3+\\ &G_{t4}·P(a_2)·p_4+G_{t5}·P(a_2)·p_5+G_{t6}·P(a_2)·p_6+\\ &G_{t7}·P(a_3)·p_7+G_{t8}·P(a_3)·p_8+G_{t9}·P(a_3)·p_9 \end{aligned} Vπ?(s)=?Gt1??P(a1?)?p1?+Gt2??P(a1?)?p2?+Gt3??P(a1?)?p3?+Gt4??P(a2?)?p4?+Gt5??P(a2?)?p5?+Gt6??P(a2?)?p6?+Gt7??P(a3?)?p7?+Gt8??P(a3?)?p8?+Gt9??P(a3?)?p9??
備注:&在哪,就在哪里對齊。
6.2 公式帶編號
- \tag{編號}編號有括號
Vπ(s)=Gt1?P(a1)?p1+Gt2?P(a1)?p2+Gt3?P(a1)?p3+Gt4?P(a2)?p4+Gt5?P(a2)?p5+Gt6?P(a2)?p6+Gt7?P(a3)?p7+Gt8?P(a3)?p8+Gt9?P(a3)?p9(1-1)\begin{aligned} V_\pi(s)=&G_{t1}·P(a_1)·p_1+G_{t2}·P(a_1)·p_2+G_{t3}·P(a_1)·p_3+\\ &G_{t4}·P(a_2)·p_4+G_{t5}·P(a_2)·p_5+G_{t6}·P(a_2)·p_6+\\ &G_{t7}·P(a_3)·p_7+G_{t8}·P(a_3)·p_8+G_{t9}·P(a_3)·p_9 \tag{1-1} \end{aligned} Vπ?(s)=?Gt1??P(a1?)?p1?+Gt2??P(a1?)?p2?+Gt3??P(a1?)?p3?+Gt4??P(a2?)?p4?+Gt5??P(a2?)?p5?+Gt6??P(a2?)?p6?+Gt7??P(a3?)?p7?+Gt8??P(a3?)?p8?+Gt9??P(a3?)?p9??(1-1)
- \tag*{編號}編號無括號
Vπ(s)=Gt1?P(a1)?p1+Gt2?P(a1)?p2+Gt3?P(a1)?p3+Gt4?P(a2)?p4+Gt5?P(a2)?p5+Gt6?P(a2)?p6+Gt7?P(a3)?p7+Gt8?P(a3)?p8+Gt9?P(a3)?p91-1\begin{aligned} V_\pi(s)=&G_{t1}·P(a_1)·p_1+G_{t2}·P(a_1)·p_2+G_{t3}·P(a_1)·p_3+\\ &G_{t4}·P(a_2)·p_4+G_{t5}·P(a_2)·p_5+G_{t6}·P(a_2)·p_6+\\ &G_{t7}·P(a_3)·p_7+G_{t8}·P(a_3)·p_8+G_{t9}·P(a_3)·p_9 \tag*{1-1} \end{aligned} Vπ?(s)=?Gt1??P(a1?)?p1?+Gt2??P(a1?)?p2?+Gt3??P(a1?)?p3?+Gt4??P(a2?)?p4?+Gt5??P(a2?)?p5?+Gt6??P(a2?)?p6?+Gt7??P(a3?)?p7?+Gt8??P(a3?)?p8?+Gt9??P(a3?)?p9??1-1
總結
以上是生活随笔為你收集整理的【更新中…】Latex语法总结的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: svn往分支提代码_SVN建立分支和合并
- 下一篇: JEECG框架创建项目使用步骤