日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 人工智能 > 卷积神经网络 >内容正文

卷积神经网络

基于CUDA的卷积神经网络算法实现

發布時間:2023/12/31 卷积神经网络 79 豆豆
生活随笔 收集整理的這篇文章主要介紹了 基于CUDA的卷积神经网络算法实现 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

摘 要

卷積神經網絡是近年來人工智能領域取得重大突破的一種重要手段,給出了圖像識別、語音識別和自然語言處理領域中關鍵問題的優化解決方案,尤其適合處理圖像方面的任務,如人臉識別和手寫體識別。手寫數字識別是用卷積神經網絡解決的經典問題,采用一般方法訓練出來的神經網絡達到了97%的識別率,幾乎與人類的識別精度一致,但在執行速度上沒有人類識別得快。在實際商業應用中不可避免地會遇到數據量過大的問題,如在手寫數字識別中有60000條規格為28*28單位像素的訓練樣本需要訓練,這樣會導致執行速度較慢,CPU在處理這樣包含大量高精度浮點數的任務時,其消耗的時間是不可接受的,在訓練期要花費數小時的時間。

針對上述問題,該文將構建基于CUDA架構的編程環境,采用CUDA/C++編程實現卷積神經網絡算法,將卷積神經網絡算法應用于手寫數字識別問題中,在選擇合適的網絡模型和相關參數的情況下,利用GPU的高度并發性能,提高卷積神經網絡訓練數據的速度。通過對GPU實現和CPU實現進行對比實驗,驗證對卷積神經網絡算法進行CUDA并行化訓練和識別是可行有效的,實驗表明在普通PC機上采用GPU實現的卷積神經網絡算法比CPU實現的卷積神經網絡算法雖然在準確率上僅提升了0.29%,但在速度上加快了15%。

關鍵詞:CUDA,卷積神經網絡,深度學習,并行計算

ABSTRACT

Convolutional neural network is a major breakthrough in the field of artificial intelligence in recent years, an important means of image recognition given to optimize speech recognition and natural language processing solutions, especially for process images tasks, such as human face recognition and handwriting recognition. Handwritten numeral recognition is a classic problem with the convolutional neural network to solve, using the general method of trained neural network reaches 97% recognition rate, with almost the same human recognition accuracy, but the speed of execution without human recognition quickly. In practical commercial applications will inevitably encounter the problem of data overload, as there are 60,000 training sample size is 28 * 28 pixel units need to be trained in digital handwriting recognition, this will result in slower performance, CPU in when processing tasks such contains a lot of high-precision floating-point number, the elapsed time is unacceptable, in the training period to spend a few hours.

To solve these problems, this paper will build a CUDA architecture-based programming environment using CUDA / C ++ programming to implement the convolution neural network algorithm. The convolution neural network algorithm is applied to handwritten numeral recognition problem. After selecting an appropriate network model and related parameters, the use of highly concurrent GPU performance,convolution neural network training to improve the speed of data. Then use the model to achieve the GPU and CPU to complete some comparative tests to verify the fact that using the CUDA to parallel implementing convolution neural network algorithm for training and recognition is feasible and effective,experiments show that on the common PC the neural network algorithm convolution convolution neural network algorithm to achieve GPU than CPU implementations on the speed by 15%, on the accuracy improved 0.29%.

Key words:CUDA, CNN, Deep Learning, Parallel Computing

源碼下載地址:https://www.write-bug.com/article/1773.html

總結

以上是生活随笔為你收集整理的基于CUDA的卷积神经网络算法实现的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。