日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當(dāng)前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

抠图算法-Alpha Matting

發(fā)布時(shí)間:2024/1/1 编程问答 43 豆豆
生活随笔 收集整理的這篇文章主要介紹了 抠图算法-Alpha Matting 小編覺得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

目錄

    • 概述
    • graph cut
    • Alpha Matting

概述

對(duì)于摳圖,比較簡(jiǎn)單的方法是圖像分割,這是很老的方法,但這其實(shí)算不上真正意義的摳圖,因?yàn)樗闹饕康氖怯糜趫D像之間塊與塊的分割。典型的就是grabcut算法,opencv上面有相應(yīng)的優(yōu)化好的算法。還有一種就是對(duì)于前后景的分割,叫做Alpha Matting,這是摳圖的主要實(shí)現(xiàn)方法,好的算法對(duì)頭發(fā)絲也能處理得很好,最近主要實(shí)現(xiàn)了2010年的一篇論文《Shared Sampling for Real-Time Alpha Matting》,這是比較出名的效果比較好的經(jīng)典前后景分割算法。

graph cut

這部分原理不是很麻煩,網(wǎng)上隨便一搜就能搜到。這里主要借助opencv的接口函數(shù)grabcut去實(shí)現(xiàn)。grabcut是在graph cut基礎(chǔ)上改進(jìn)的一種圖像分割算法,網(wǎng)上有很多grabcut方面的論文,opencv的grabcut算法也是在此基礎(chǔ)上優(yōu)化封裝的。這種方法的實(shí)現(xiàn),需要人工交互框出一個(gè)矩形表示待處理的區(qū)域,矩形外都被視為背景,還可以在人工交互上用畫筆繪畫,繪畫區(qū)域表示前景或者后景。
代碼如下:

#include <iostream> #include <opencv2\opencv.hpp> #include <opencv2/core/core.hpp> #include<opencv2/highgui/highgui.hpp> #include "opencv2/imgproc/imgproc.hpp"using namespace std; using namespace cv;static void help() {cout << "\nThis program demonstrates GrabCut segmentation -- select an object in a region\n""and then grabcut will attempt to segment it out.\n""Call:\n""./grabcut <image_name>\n""\nSelect a rectangular area around the object you want to segment\n" <<"\nHot keys: \n""\tESC - quit the program\n""\tr - restore the original image\n""\tn - next iteration\n""\n""\tleft mouse button - set rectangle\n""\n""\tCTRL+left mouse button - set GC_BGD pixels\n""\tSHIFT+left mouse button - set CG_FGD pixels\n""\n""\tCTRL+right mouse button - set GC_PR_BGD pixels\n""\tSHIFT+right mouse button - set CG_PR_FGD pixels\n" << endl; }const Scalar RED = Scalar(0, 0, 255); const Scalar PINK = Scalar(230, 130, 255); const Scalar BLUE = Scalar(255, 0, 0); const Scalar LIGHTBLUE = Scalar(255, 255, 160); const Scalar GREEN = Scalar(0, 255, 0);const int BGD_KEY = CV_EVENT_FLAG_CTRLKEY; //Ctrl鍵 const int FGD_KEY = CV_EVENT_FLAG_SHIFTKEY; //Shift鍵static void getBinMask(const Mat& comMask, Mat& binMask) {if (comMask.empty() || comMask.type() != CV_8UC1)CV_Error(CV_StsBadArg, "comMask is empty or has incorrect type (not CV_8UC1)");if (binMask.empty() || binMask.rows != comMask.rows || binMask.cols != comMask.cols)binMask.create(comMask.size(), CV_8UC1);binMask = comMask & 1; //得到mask的最低位,實(shí)際上是只保留確定的或者有可能的前景點(diǎn)當(dāng)做mask }class GCApplication { public:enum{ NOT_SET = 0, IN_PROCESS = 1, SET = 2 };static const int radius = 2;static const int thickness = -1;void reset();void setImageAndWinName(const Mat& _image, const string& _winName);void showImage() const;void mouseClick(int event, int x, int y, int flags, void* param);int nextIter();int getIterCount() const { return iterCount; } private:void setRectInMask();void setLblsInMask(int flags, Point p, bool isPr);const string* winName;const Mat* image;Mat mask;Mat bgdModel, fgdModel;uchar rectState, lblsState, prLblsState;bool isInitialized;Rect rect;vector<Point> fgdPxls, bgdPxls, prFgdPxls, prBgdPxls;int iterCount; };/*給類的變量賦值*/ void GCApplication::reset() {if (!mask.empty())mask.setTo(Scalar::all(GC_BGD));bgdPxls.clear(); fgdPxls.clear();prBgdPxls.clear(); prFgdPxls.clear();isInitialized = false;rectState = NOT_SET; //NOT_SET == 0lblsState = NOT_SET;prLblsState = NOT_SET;iterCount = 0; }/*給類的成員變量賦值而已*/ void GCApplication::setImageAndWinName(const Mat& _image, const string& _winName) {if (_image.empty() || _winName.empty())return;image = &_image;winName = &_winName;mask.create(image->size(), CV_8UC1);reset(); }/*顯示4個(gè)點(diǎn),一個(gè)矩形和圖像內(nèi)容,因?yàn)楹竺娴牟襟E很多地方都要用到這個(gè)函數(shù),所以單獨(dú)拿出來*/ void GCApplication::showImage() const {if (image->empty() || winName->empty())return;Mat res;Mat binMask;if (!isInitialized)image->copyTo(res);else{getBinMask(mask, binMask);image->copyTo(res, binMask); //按照最低位是0還是1來復(fù)制,只保留跟前景有關(guān)的圖像,比如說可能的前景,可能的背景}vector<Point>::const_iterator it;/*下面4句代碼是將選中的4個(gè)點(diǎn)用不同的顏色顯示出來*/for (it = bgdPxls.begin(); it != bgdPxls.end(); ++it) //迭代器可以看成是一個(gè)指針circle(res, *it, radius, BLUE, thickness);for (it = fgdPxls.begin(); it != fgdPxls.end(); ++it) //確定的前景用紅色表示circle(res, *it, radius, RED, thickness);for (it = prBgdPxls.begin(); it != prBgdPxls.end(); ++it)circle(res, *it, radius, LIGHTBLUE, thickness);for (it = prFgdPxls.begin(); it != prFgdPxls.end(); ++it)circle(res, *it, radius, PINK, thickness);/*畫矩形*/if (rectState == IN_PROCESS || rectState == SET)rectangle(res, Point(rect.x, rect.y), Point(rect.x + rect.width, rect.y + rect.height), GREEN, 2);imshow(*winName, res); }/*該步驟完成后,mask圖像中rect內(nèi)部是3,外面全是0*/ void GCApplication::setRectInMask() {assert(!mask.empty());mask.setTo(GC_BGD); //GC_BGD == 0rect.x = max(0, rect.x);rect.y = max(0, rect.y);rect.width = min(rect.width, image->cols - rect.x);rect.height = min(rect.height, image->rows - rect.y);(mask(rect)).setTo(Scalar(GC_PR_FGD)); //GC_PR_FGD == 3,矩形內(nèi)部,為可能的前景點(diǎn) }void GCApplication::setLblsInMask(int flags, Point p, bool isPr) {vector<Point> *bpxls, *fpxls;uchar bvalue, fvalue;if (!isPr) //確定的點(diǎn){bpxls = &bgdPxls;fpxls = &fgdPxls;bvalue = GC_BGD; //0fvalue = GC_FGD; //1}else //概率點(diǎn){bpxls = &prBgdPxls;fpxls = &prFgdPxls;bvalue = GC_PR_BGD; //2fvalue = GC_PR_FGD; //3}if (flags & BGD_KEY){bpxls->push_back(p);circle(mask, p, radius, bvalue, thickness); //該點(diǎn)處為2}if (flags & FGD_KEY){fpxls->push_back(p);circle(mask, p, radius, fvalue, thickness); //該點(diǎn)處為3} }/*鼠標(biāo)響應(yīng)函數(shù),參數(shù)flags為CV_EVENT_FLAG的組合*/ void GCApplication::mouseClick(int event, int x, int y, int flags, void*) {// TODO add bad args checkswitch (event){case CV_EVENT_LBUTTONDOWN: // set rect or GC_BGD(GC_FGD) labels{bool isb = (flags & BGD_KEY) != 0,isf = (flags & FGD_KEY) != 0;if (rectState == NOT_SET && !isb && !isf)//只有左鍵按下時(shí){rectState = IN_PROCESS; //表示正在畫矩形rect = Rect(x, y, 1, 1);}if ((isb || isf) && rectState == SET) //按下了alt鍵或者shift鍵,且畫好了矩形,表示正在畫前景背景點(diǎn)lblsState = IN_PROCESS;}break;case CV_EVENT_RBUTTONDOWN: // set GC_PR_BGD(GC_PR_FGD) labels{bool isb = (flags & BGD_KEY) != 0,isf = (flags & FGD_KEY) != 0;if ((isb || isf) && rectState == SET) //正在畫可能的前景背景點(diǎn)prLblsState = IN_PROCESS;}break;case CV_EVENT_LBUTTONUP:if (rectState == IN_PROCESS){rect = Rect(Point(rect.x, rect.y), Point(x, y)); //矩形結(jié)束rectState = SET;setRectInMask();assert(bgdPxls.empty() && fgdPxls.empty() && prBgdPxls.empty() && prFgdPxls.empty());showImage();}if (lblsState == IN_PROCESS) //已畫了前后景點(diǎn){setLblsInMask(flags, Point(x, y), false); //畫出前景點(diǎn)lblsState = SET;showImage();}break;case CV_EVENT_RBUTTONUP:if (prLblsState == IN_PROCESS){setLblsInMask(flags, Point(x, y), true); //畫出背景點(diǎn)prLblsState = SET;showImage();}break;case CV_EVENT_MOUSEMOVE:if (rectState == IN_PROCESS){rect = Rect(Point(rect.x, rect.y), Point(x, y));assert(bgdPxls.empty() && fgdPxls.empty() && prBgdPxls.empty() && prFgdPxls.empty());showImage(); //不斷的顯示圖片}else if (lblsState == IN_PROCESS){setLblsInMask(flags, Point(x, y), false);showImage();}else if (prLblsState == IN_PROCESS){setLblsInMask(flags, Point(x, y), true);showImage();}break;} }/*該函數(shù)進(jìn)行g(shù)rabcut算法,并且返回算法運(yùn)行迭代的次數(shù)*/ int GCApplication::nextIter() {if (isInitialized)//使用grab算法進(jìn)行一次迭代,參數(shù)2為mask,里面存的mask位是:矩形內(nèi)部除掉那些可能是背景或者已經(jīng)確定是背景后的所有的點(diǎn),且mask同時(shí)也為輸出//保存的是分割后的前景圖像grabCut(*image, mask, rect, bgdModel, fgdModel, 1);else{if (rectState != SET)return iterCount;if (lblsState == SET || prLblsState == SET)grabCut(*image, mask, rect, bgdModel, fgdModel, 1, GC_INIT_WITH_MASK);elsegrabCut(*image, mask, rect, bgdModel, fgdModel, 1, GC_INIT_WITH_RECT);isInitialized = true;}iterCount++;bgdPxls.clear(); fgdPxls.clear();prBgdPxls.clear(); prFgdPxls.clear();return iterCount; }GCApplication gcapp;static void on_mouse(int event, int x, int y, int flags, void* param) {gcapp.mouseClick(event, x, y, flags, param); }int main(int argc, char** argv) {string filename = "input.png";Mat image = imread(filename, 1);if (image.empty()){cout << "\n Durn, couldn't read image filename " << filename << endl;return 1;}help();const string winName = "image";cvNamedWindow(winName.c_str(), CV_WINDOW_AUTOSIZE);cvSetMouseCallback(winName.c_str(), on_mouse, 0);gcapp.setImageAndWinName(image, winName);gcapp.showImage();clock_t start, end;for (;;){char c = cvWaitKey(0);switch ((char)c){case '\x1b':cout << "Exiting ..." << endl;goto exit_main;case 'r':cout << endl;gcapp.reset();gcapp.showImage();break;case 'n':int iterCount = gcapp.getIterCount();//cout << "<" << iterCount << "... ";start = clock();int newIterCount = gcapp.nextIter();end = clock();double endtime = (double)(end - start) / CLOCKS_PER_SEC;cout << "NO." << newIterCount << ": " << endtime * 1000 << "ms" << endl;if (newIterCount > iterCount){gcapp.showImage();//cout << newIterCount << ">" << endl;}elsecout << "rect must be determined>" << endl;break;}}exit_main:cvDestroyWindow(winName.c_str());return 0; }

代碼很簡(jiǎn)單,使用方法都有注釋。核心就是grabcut函數(shù)。
下面是運(yùn)行結(jié)果:
輸入:

輸出:

耗時(shí):

No.1-No.7分別表示算法多次迭代,每次迭代的耗時(shí),迭代次數(shù)越多,每次添加新的前后景標(biāo)志的話,摳圖效果會(huì)更好。可以看出這種算法的時(shí)間效果不太好。

Alpha Matting

這個(gè)算法是重點(diǎn)想介紹和實(shí)現(xiàn)的。主要實(shí)現(xiàn)了2010年的一篇論文《Shared Sampling for Real-Time Alpha Matting》,這是比較出名的效果比較好的經(jīng)典前后景分割算法。
總結(jié)的手稿貼出一下:

Alpha matting算法研究的是如何將一幅圖像中的前景信息和背景信息分離的問題,即摳圖。我們把圖像I分割成一個(gè)前景對(duì)象圖像F,一個(gè)背景圖像B和一個(gè)alpha matte α,于是就有了digital matting的數(shù)學(xué)定義: I=α×F+(1-α)×B。
算法的輸入:原始圖片,三分圖(trimap)或“亂畫圖”(scribble)。
《Shared Sampling for Real-Time Alpha Matting》這篇論文中算法大致步驟如下:
(1)Expansion,針對(duì)用戶的輸入,對(duì)已知區(qū)域(前景或背景)進(jìn)行小規(guī)模的擴(kuò)展;
(2)Sample and Gather,對(duì)剩余的未知區(qū)域內(nèi)的每個(gè)點(diǎn)按一定的規(guī)則取樣,并選擇出最佳的一對(duì)前景和背景取樣點(diǎn);
(3)Re?nement,在一定的領(lǐng)域范圍內(nèi),對(duì)未知區(qū)域內(nèi)的每個(gè)點(diǎn)的最佳配對(duì)重新進(jìn)行組合。
(4)Local Smoothing,對(duì)得到的前景和背景對(duì)以及透明度值進(jìn)行局部平滑,以減少噪音。
關(guān)于這篇論文的源碼給出下載地址:code
關(guān)于這篇論文的數(shù)據(jù)下載及論文原文地址:Shared Sampling for Real-Time Alpha Matting
不過下載下來后運(yùn)行的時(shí)候出了一點(diǎn)小問題,主要就是mat、cvmat、IplImage之間數(shù)據(jù)傳遞的問題,把他們統(tǒng)一改成mat類型就沒問題了。
下面是運(yùn)行結(jié)果:
輸入:


輸出:

耗時(shí):

可以看到使用它的數(shù)據(jù)效果還是很好,不過他也有缺點(diǎn),就是應(yīng)用的摳圖場(chǎng)合的背景應(yīng)該比較簡(jiǎn)單。

總結(jié)

以上是生活随笔為你收集整理的抠图算法-Alpha Matting的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。