算法#03--详解最小二乘法原理和代码
最小二乘法原理
最小二乘法的目標:求誤差的最小平方和,對應有兩種:線性和非線性。線性最小二乘的解是closed-form(如下文),而非線性最小二乘沒有closed-form,通常用迭代法求解(如高斯牛頓迭代法,本文不作介紹)。
【首先得到線性方程組】
1.概念
最小二乘法(又稱最小平方法)是一種數學優化技術。它通過最小化誤差的平方和尋找數據的最佳函數匹配。
利用最小二乘法可以簡便地求得未知的數據,并使得這些求得的數據與實際數據之間誤差的平方和為最小。
最小二乘法還可用于曲線擬合。
2.原理
函數原型:
已知:
(x0,y0),(x1,y1)…(xi,yi)…(xn,yn)個點,n>=k。
偏差平方和:
偏差平方和最小值可以通過使偏導數等于零得到:
簡化左邊等式有:
寫成矩陣形式:公式①
將這個范德蒙得矩陣化簡后可得到:公式②
也就是說X*A=Y,那么A = (X’*X)-1*X’*Y,便得到了系數矩陣A,同時,我們也就得到了擬合曲線。
高斯消元法
【然后解線性方程組,即公式①】
1.概念
數學上,高斯消元法(或譯:高斯消去法)(英語:Gaussian Elimination),是線性代數中的一個算法,可用來為線性方程組求解,求出矩陣的秩,以及求出可逆方陣的逆矩陣。當用于一個矩陣時,高斯消元法會產生出一個“行梯陣式”。
2.原理
3.偽代碼
這個算法和上面談到的有點不同,它由絕對值最大的部分開始做起,這樣可以改善算法的穩定性。本算法由左至右地計算,每作出以下三個步驟,才跳到下一列和下一行:
- 定出i列的絕對值最大的一個非0的數,將第i行的值與該行交換,使得該行擁有該列的最大值;
- 將i列的數字除以該數,使得i列i行的數成為1;
- 第(i+1)行以下(包括第(j+1)行)所有元素都轉化為0。
所有步驟完成后,這個矩陣會變成一個行梯矩陣,再用代入法就可以求解該方程組。
i = 1j = 1while (i ≤ m and j ≤ n) doFind pivot in column j, starting in row i // 從第i行開始,找出第j列中的最大值(i、j值應保持不變) maxi = ifor k = i+1 to m doif abs(A[k,j]) > abs(A[maxi,j]) thenmaxi = k // 使用交換法找出最大值(絕對值最大)end ifend forif A[maxi,j] ≠ 0 then // 判定找到的絕對值最大值是否為零:若不為零就進行以下操作;若為零則說明該列第(i+1)行以下(包括第(i+1)行)均為零,不需要再處理,直接跳轉至第(j+1)列第(i+1)行swap rows i and maxi, but do not change the value of i // 將第i行與找到的最大值所在行做交換,保持i值不變(i值記錄了本次操作的起始行)Now A[i,j] will contain the old value of A[maxi,j].divide each entry in row i by A[i,j] // 將交換后的第i行歸一化(第i行所有元素分別除以A[i,j])Now A[i,j] will have the value 1.for u = i+1 to m do // 第j列中,第(i+1)行以下(包括第(i+1)行)所有元素都減去A[i,j],直到第j列的i+1行以後元素均為零subtract A[u,j] * row i from row uNow A[u,j] will be 0, since A[u,j] - A[i,j] * A[u,j] = A[u,j] - 1 * A[u,j] = 0.end fori = i + 1 end ifj = j + 1 // 第j列中,第(i+1)行以下(包括第(i+1)行)所有元素均為零。移至第(j+1)列,從第(i+1)行開始重復上述步驟。end while代碼
public class CurveFitting {///<summary>///最小二乘法擬合二元多次曲線///例如y=ax+b///其中MultiLine將返回a,b兩個參數。///a對應MultiLine[1]///b對應MultiLine[0]///</summary>///<param name="arrX">已知點的x坐標集合</param>///<param name="arrY">已知點的y坐標集合</param>///<param name="length">已知點的個數</param>///<param name="dimension">方程的最高次數</param>public static double[] MultiLine(double[] arrX, double[] arrY, int length, int dimension) {int n = dimension + 1; //dimension次方程需要求 dimension+1個 系數 double[][] Guass = new double[n][n + 1]; for (int i = 0; i < n; i++){ //求矩陣公式①int j;for (j = 0; j < n; j++){Guass[i][j] = SumArr(arrX, j + i, length);//公式①等號左邊第一個矩陣,即Ax=b中的A}Guass[i][j] = SumArr(arrX, i, arrY, 1, length);//公式①等號右邊的矩陣,即Ax=b中的b} return ComputGauss(Guass, n);//高斯消元法}//求數組的元素的n次方的和,即矩陣A中的元素private static double SumArr(double[] arr, int n, int length) {double s = 0;for (int i = 0; i < length; i++){if (arr[i] != 0 || n != 0){s = s + Math.pow(arr[i], n);}else{s = s + 1;}}return s;}//求數組的元素的n次方的和,即矩陣b中的元素private static double SumArr(double[] arr1, int n1, double[] arr2, int n2, int length) {double s = 0;for (int i = 0; i < length; i++){if ((arr1[i] != 0 || n1 != 0) && (arr2[i] != 0 || n2 != 0))s = s + Math.pow(arr1[i], n1) * Math.pow(arr2[i], n2);elses = s + 1;}return s; }//高斯消元法解線性方程組private static double[] ComputGauss(double[][] Guass, int n) {int i, j;int k, m;double temp;double max;double s;double[] x = new double[n];for (i = 0; i < n; i++) {x[i] = 0.0;//初始化}for (j = 0; j < n; j++) {max = 0;k = j;// 從第i行開始,找出第j列中的最大值(i、j值應保持不變) for (i = j; i < n; i++) {if (Math.abs(Guass[i][j]) > max){max = Guass[i][j];// 使用交換法找出最大值(絕對值最大)k = i;}}if (k != j) {//將第j行與找到的最大值所在行做交換,保持i值不變(j值記錄了本次操作的起始行)for (m = j; m < n + 1; m++) {temp = Guass[j][m];Guass[j][m] = Guass[k][m];Guass[k][m] = temp;}}if (max == 0) {// "此線性方程為奇異線性方程" return x;}// 第m列中,第(j+1)行以下(包括第(j+1)行)所有元素都減去Guass[j][m] * s / (Guass[j][j])//直到第m列的i+1行以後元素均為零for (i = j + 1; i < n; i++) {s = Guass[i][j]; for (m = j; m < n + 1; m++) {Guass[i][m] = Guass[i][m] - Guass[j][m] * s / (Guass[j][j]); }}}//結束for (j=0;j<n;j++)//回代過程(見公式4.1.5)for (i = n - 1; i >= 0; i--) {s = 0;for (j = i + 1; j < n; j++) {s = s + Guass[i][j] * x[j];}x[i] = (Guass[i][n] - s) / Guass[i][i];}return x;}//返回值是函數的系數public static void main(String[] args) {double[] x = {0, 1, 2, 3, 4, 5, 6, 7};double[] y = {0, 1, 4, 9, 16, 25, 36, 49};double[] a = MultiLine(x, y, 8, 2);for(int i =0; i <a.length;i++){System.out.println(a[i]);}} }輸出:
0.708333333333342
-0.37500000000000583
1.0416666666666674
取整就得到y=x^2。
總結
以上是生活随笔為你收集整理的算法#03--详解最小二乘法原理和代码的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: Exsi平台
- 下一篇: 978. Longest Turbule