日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問(wèn) 生活随笔!

生活随笔

當(dāng)前位置: 首頁(yè) > 编程资源 > 综合教程 >内容正文

综合教程

随机抽样 (numpy.random)

發(fā)布時(shí)間:2024/1/3 综合教程 33 生活家
生活随笔 收集整理的這篇文章主要介紹了 随机抽样 (numpy.random) 小編覺(jué)得挺不錯(cuò)的,現(xiàn)在分享給大家,幫大家做個(gè)參考.

隨機(jī)抽樣(numpy.random)

簡(jiǎn)單的隨機(jī)數(shù)據(jù)

rand(d0,d1,...,dn)

隨機(jī)值

>>> np.random.rand(3,2)
array([[ 0.14022471,  0.96360618],  #random
       [ 0.37601032,  0.25528411],  #random
       [ 0.49313049,  0.94909878]]) #random

randn(d0,d1,...,dn)

返回一個(gè)樣本,具有標(biāo)準(zhǔn)正態(tài)分布。

Notes

For random samples from, use:

sigma * np.random.randn(...) + mu

Examples

>>> np.random.randn()
2.1923875335537315 #random

Two-by-four array of samples from N(3, 6.25):

>>> 2.5 * np.random.randn(2, 4) + 3
array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],  #random
       [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]]) #random

randint(low[,high,size])

返回隨機(jī)的整數(shù),位于半開(kāi)區(qū)間 [low, high)。

>>> np.random.randint(2, size=10)
array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])
>>> np.random.randint(1, size=10)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Generate a 2 x 4 array of ints between 0 and 4, inclusive:

>>> np.random.randint(5, size=(2, 4))
array([[4, 0, 2, 1],
       [3, 2, 2, 0]])

random_integers(low[,high,size])

返回隨機(jī)的整數(shù),位于閉區(qū)間 [low, high]。

Notes

To sample from N evenly spaced floating-point numbers between a and b, use:

a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

Examples

>>> np.random.random_integers(5)
4
>>> type(np.random.random_integers(5))
<type ‘int‘>
>>> np.random.random_integers(5, size=(3.,2.))
array([[5, 4],
       [3, 3],
       [4, 5]])

Choose five random numbers from the set of five evenly-spaced numbers between 0 and 2.5, inclusive (i.e., from the set):

>>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
array([ 0.625,  1.25 ,  0.625,  0.625,  2.5  ])

Roll two six sided dice 1000 times and sum the results:

>>> d1 = np.random.random_integers(1, 6, 1000)
>>> d2 = np.random.random_integers(1, 6, 1000)
>>> dsums = d1 + d2

Display results as a histogram:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(dsums, 11, normed=True)
>>> plt.show()

random_sample([size])

返回隨機(jī)的浮點(diǎn)數(shù),在半開(kāi)區(qū)間 [0.0, 1.0)。

To samplemultiply the output ofrandom_sampleby(b-a)and adda:

(b - a) * random_sample() + a

Examples

>>> np.random.random_sample()
0.47108547995356098
>>> type(np.random.random_sample())
<type ‘float‘>
>>> np.random.random_sample((5,))
array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428])

Three-by-two array of random numbers from [-5, 0):

>>> 5 * np.random.random_sample((3, 2)) - 5
array([[-3.99149989, -0.52338984],
       [-2.99091858, -0.79479508],
       [-1.23204345, -1.75224494]])

random([size])

返回隨機(jī)的浮點(diǎn)數(shù),在半開(kāi)區(qū)間 [0.0, 1.0)。

(官網(wǎng)例子與random_sample完全一樣)

ranf([size])

返回隨機(jī)的浮點(diǎn)數(shù),在半開(kāi)區(qū)間 [0.0, 1.0)。

(官網(wǎng)例子與random_sample完全一樣)

sample([size])

返回隨機(jī)的浮點(diǎn)數(shù),在半開(kāi)區(qū)間 [0.0, 1.0)。

(官網(wǎng)例子與random_sample完全一樣)

choice(a[,size,replace,p])

生成一個(gè)隨機(jī)樣本,從一個(gè)給定的一維數(shù)組

Examples

Generate a uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3)
array([0, 3, 4])
>>> #This is equivalent to np.random.randint(0,5,3)

Generate a non-uniform random sample from np.arange(5) of size 3:

>>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
array([3, 3, 0])

Generate a uniform random sample from np.arange(5) of size 3 without replacement:

>>> np.random.choice(5, 3, replace=False)
array([3,1,0])
>>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

Generate a non-uniform random sample from np.arange(5) of size 3 without replacement:

>>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
array([2, 3, 0])

Any of the above can be repeated with an arbitrary array-like instead of just integers. For instance:

>>> aa_milne_arr = [‘pooh‘, ‘rabbit‘, ‘piglet‘, ‘Christopher‘]
>>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
array([‘pooh‘, ‘pooh‘, ‘pooh‘, ‘Christopher‘, ‘piglet‘],
      dtype=‘|S11‘)

bytes(length)

返回隨機(jī)字節(jié)。

>>> np.random.bytes(10)
‘ ehx85x022SZxbfxa4‘ #random

排列

shuffle(x)

現(xiàn)場(chǎng)修改序列,改變自身內(nèi)容。(類似洗牌,打亂順序)

>>> arr = np.arange(10)
>>> np.random.shuffle(arr)
>>> arr
[1 7 5 2 9 4 3 6 0 8]

This function only shuffles the array along the first index of a multi-dimensional array:

>>> arr = np.arange(9).reshape((3, 3))
>>> np.random.shuffle(arr)
>>> arr
array([[3, 4, 5],
       [6, 7, 8],
       [0, 1, 2]])

permutation(x)

返回一個(gè)隨機(jī)排列

>>> np.random.permutation(10)
array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6])
>>> np.random.permutation([1, 4, 9, 12, 15])
array([15,  1,  9,  4, 12])
>>> arr = np.arange(9).reshape((3, 3))
>>> np.random.permutation(arr)
array([[6, 7, 8],
       [0, 1, 2],
       [3, 4, 5]])

分布

beta(a,b[,size])

貝塔分布樣本,在[0,1]內(nèi)。

binomial(n,p[,size])

二項(xiàng)分布的樣本。

chisquare(df[,size])

卡方分布樣本。

dirichlet(alpha[,size])

狄利克雷分布樣本。

exponential([scale,size])

指數(shù)分布

f(dfnum,dfden[,size])

F分布樣本。

gamma(shape[,scale,size])

伽馬分布

geometric(p[,size])

幾何分布

gumbel([loc,scale,size])

耿貝爾分布。

hypergeometric(ngood,nbad,nsample[,size])

超幾何分布樣本。

laplace([loc,scale,size])

拉普拉斯或雙指數(shù)分布樣本

logistic([loc,scale,size])

Logistic分布樣本

lognormal([mean,sigma,size])

對(duì)數(shù)正態(tài)分布

logseries(p[,size])

對(duì)數(shù)級(jí)數(shù)分布。

multinomial(n,pvals[,size])

多項(xiàng)分布

multivariate_normal(mean,cov[,size])

多元正態(tài)分布。

>>> mean = [0,0]
>>> cov = [[1,0],[0,100]] # diagonal covariance, points lie on x or y-axis
>>> import matplotlib.pyplot as plt
>>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
>>> plt.plot(x, y, ‘x‘); plt.axis(‘equal‘); plt.show()

negative_binomial(n,p[,size])

負(fù)二項(xiàng)分布

noncentral_chisquare(df,nonc[,size])

非中心卡方分布

noncentral_f(dfnum,dfden,nonc[,size])

非中心F分布

normal([loc,scale,size])

正態(tài)(高斯)分布

Notes

The probability density for the Gaussian distribution is

whereis the mean andthe standard deviation. The square of the standard deviation,, is called the variance.

The function has its peak at the mean, and its “spread” increases with the standard deviation (the function reaches 0.607 times its maximum atand[R217]).

Examples

Draw samples from the distribution:

>>> mu, sigma = 0, 0.1 # mean and standard deviation
>>> s = np.random.normal(mu, sigma, 1000)

Verify the mean and the variance:

>>> abs(mu - np.mean(s)) < 0.01
True
>>> abs(sigma - np.std(s, ddof=1)) < 0.01
True

Display the histogram of the samples, along with the probability density function:

>>> import matplotlib.pyplot as plt
>>> count, bins, ignored = plt.hist(s, 30, normed=True)
>>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
...          linewidth=2, color=‘r‘)
>>> plt.show()

pareto(a[,size])

帕累托(Lomax)分布

poisson([lam,size])

泊松分布

power(a[,size])

Draws samples in [0, 1] from a power distribution with positive exponent a - 1.

rayleigh([scale,size])

Rayleigh分布

standard_cauchy([size])

標(biāo)準(zhǔn)柯西分布

standard_exponential([size])

標(biāo)準(zhǔn)的指數(shù)分布

standard_gamma(shape[,size])

標(biāo)準(zhǔn)伽馬分布

standard_normal([size])

標(biāo)準(zhǔn)正態(tài)分布(mean=0, stdev=1).

standard_t(df[,size])

Standard Student’s t distribution with df degrees of freedom.

triangular(left,mode,right[,size])

三角形分布

uniform([low,high,size])

均勻分布

vonmises(mu,kappa[,size])

von Mises分布

wald(mean,scale[,size])

瓦爾德(逆高斯)分布

weibull(a[,size])

Weibull分布

zipf(a[,size])

齊普夫分布

隨機(jī)數(shù)生成器

RandomState

Container for the Mersenne Twister pseudo-random number generator.

seed([seed])

Seed the generator.

get_state()

Return a tuple representing the internal state of the generator.

set_state(state)

Set the internal state of the generator from a tuple.


總結(jié)

以上是生活随笔為你收集整理的随机抽样 (numpy.random)的全部?jī)?nèi)容,希望文章能夠幫你解決所遇到的問(wèn)題。

如果覺(jué)得生活随笔網(wǎng)站內(nèi)容還不錯(cuò),歡迎將生活随笔推薦給好友。