spark | scala | 线性代数库Breeze学习
最近在學習spark,對線性代數庫Breeze做了學習,介紹下常用的函數
前提,使用Breeze庫,必須導入相關的包
import breeze.linalg._
import breeze.numerics._
1
2
最基礎的操作:矩陣,向量,數組的轉換
1、DenseMatrix.zerosDouble
全為零的n*m的矩陣,Double類型
2、DenseVector.zerosDouble
全為零的n個數組成的向量,Double類型
3、DenseVector.onesDouble
全為1的n個數組成的向量,Double類型
4、DenseVector.fill(n){5.0}
產生向量,長度為n,用5.0來填充
5、DenseVector.range(start,stop,step)?
DenseVector.rangeD(start,stop,step)
產生序列向量?
6、DenseVector.linspace(start,stop,numvals)
產生向量,有numvals個數的向量
7、DenseMatrix.eyeDouble
產生n*n的矩陣,對角為1,Double類型
8、diag(DenseVector(1.0,2.0,3.0))
產生主對角元素為1.0,2.0,3.0的矩陣
9、DenseMatrix((1.0,2.0),(3.0,4.0))
產生矩陣
10、DenseVector(1,2,3,4)
產生向量
11、DenseVector(1,2,3,4).t
向量轉置
12、DenseVector.tabulate(3){i => 2*i}
scala> DenseVector.tabulate(3){i => 2*i}
1
res33: breeze.linalg.DenseVector[Int] = DenseVector(0, 2, 4)
結果為:0,2,4
13、DenseMatrix.tabulate(3,2){case(i,j) => i+j}
scala> DenseMatrix.tabulate(3,2){case(i,j) => i+j}
res34: breeze.linalg.DenseMatrix[Int] =
0 ?1
1 ?2
2 ?3
行列數相加
14、new DenseVector(Array(1,2,3,4))?
從數組創建向量
scala> new DenseVector(Array(1,2,3,4))
res35: breeze.linalg.DenseVector[Int] = DenseVector(1, 2, 3, 4)
15、new DenseMatrix(2,3,Array(11,12,13,21,22,23))?
從數組創建矩陣
scala> new DenseMatrix(2,3,Array(11,12,13,21,22,23))
res36: breeze.linalg.DenseMatrix[Int] =
11 ?13 ?22
12 ?21 ?23
16、DenseVector.rand(4)?
得到0到1的隨機向量,長度為4
scala> DenseVector.rand(4)
res37: breeze.linalg.DenseVector[Double] = DenseVector(0.9838289972536518, 0.798555117073358, 0.30308183931925403, 0.7958095551517774)
17、DenseMatrix.rand(2,3)?
得到0到1的隨機矩陣
scala> DenseMatrix.rand(2,3)
res38: breeze.linalg.DenseMatrix[Double] =
0.3891370890132193 ?0.06732600444704517 ?0.2136759825764527
0.587145241786718 ? 0.8670050354290917 ? 0.5494899108312414
Breeze元素訪問
1、指定位置
scala> val a = DenseVector(1,2,3,4,5)
a: breeze.linalg.DenseVector[Int] = DenseVector(1, 2, 3, 4, 5)
scala> a(2)
res44: Int = 3
2、向量子集
scala> a(1 to 2)
res40: breeze.linalg.DenseVector[Int] = DenseVector(2, 3)
scala> a(1 until 2)
res41: breeze.linalg.DenseVector[Int] = DenseVector(2)
scala> a.slice(1,2)
res42: breeze.linalg.DenseVector[Int] = DenseVector(2)
3、按照指定步長取子集
scala> a(3 to 1 by -1)
res45: breeze.linalg.DenseVector[Int] = DenseVector(4, 3, 2)
4、指定開始位置至結尾
scala> a(2 to -1 )
res48: breeze.linalg.DenseVector[Int] = DenseVector(3, 4, 5)
5、最后一個元素
scala> a(2 to -1 )
res48: breeze.linalg.DenseVector[Int] = DenseVector(3, 4, 5)
6、矩陣指定列
scala> val a = DenseMatrix((1,2,3,4,5),(3,4,5,6,7),(5,6,7,8,9))
a: breeze.linalg.DenseMatrix[Int] =
1 ?2 ?3 ?4 ?5
3 ?4 ?5 ?6 ?7
5 ?6 ?7 ?8 ?9
scala> a(::,2)
res1: breeze.linalg.DenseVector[Int] = DenseVector(3, 5, 7)
Breeze元素操作
1、a.reshape(3,2)?
調整矩陣形狀
scala> val a = DenseMatrix((2,3),(3,4),(6,7))
a: breeze.linalg.DenseMatrix[Int] =
2 ?3
3 ?4
6 ?7
scala> val a = DenseMatrix((2,3),(3,4),(6,7))
a: breeze.linalg.DenseMatrix[Int] =
2 ?3
3 ?4
6 ?7
2、a.toDenseVector?
矩陣轉成向量
scala> val a = DenseMatrix((2,3),(3,4),(6,7))
a: breeze.linalg.DenseMatrix[Int] =
2 ?3
3 ?4
6 ?7
scala> a.toDenseVector
res3: breeze.linalg.DenseVector[Int] = DenseVector(2, 3, 6, 3, 4, 7)
3、lowerTriangular?
下三角矩陣
scala> val b = DenseMatrix((1,2,3,4,5,6),(2,3,4,5,6,7),(3,4,5,6,7,8))
b: breeze.linalg.DenseMatrix[Int] =
1 ?2 ?3 ?4 ?5 ?6
2 ?3 ?4 ?5 ?6 ?7
3 ?4 ?5 ?6 ?7 ?8
scala> lowerTriangular(b)
res7: breeze.linalg.DenseMatrix[Int] =
1 ?0 ?0
2 ?3 ?0
3 ?4 ?5
4、upperTriangular?
上三角矩陣
scala> upperTriangular(b)
res8: breeze.linalg.DenseMatrix[Int] =
1 ?2 ?3
0 ?3 ?4
0 ?0 ?5
5、b.copy?
復制矩陣
scala> b.copy
res9: breeze.linalg.DenseMatrix[Int] =
1 ?2 ?3 ?4 ?5 ?6
2 ?3 ?4 ?5 ?6 ?7
3 ?4 ?5 ?6 ?7 ?8
6、diag(a)?
取對角線元素
scala> val c = DenseMatrix((1,2,3),(2,3,4),(3,4,5))
c: breeze.linalg.DenseMatrix[Int] =
1 ?2 ?3
2 ?3 ?4
3 ?4 ?5
scala> diag(c)
res12: breeze.linalg.DenseVector[Int] = DenseVector(1, 3, 5)
7、c(1 to 4 ) := 5.0?
子集賦值,將c中的第2個數到第五個數賦值為5.0
scala> val d = DenseVector(1,2,3,4,5,6,7,8,8)
d: breeze.linalg.DenseVector[Int] = DenseVector(1, 2, 3, 4, 5, 6, 7, 8, 8)
scala> d(1 to 4) := ?5
res18: breeze.linalg.DenseVector[Int] = DenseVector(5, 5, 5, 5)
scala> d
res21: breeze.linalg.DenseVector[Int] = DenseVector(1, 5, 5, 5, 5, 6, 7, 8, 8)
8、d(1 to 4) := DenseVector(1,2,3)?
子集賦向量
scala> d(1 to 4):=DenseVector(1,2,3,4)
res26: breeze.linalg.DenseVector[Int] = DenseVector(1, 2, 3, 4)
scala> d
res27: breeze.linalg.DenseVector[Int] = DenseVector(1, 1, 2, 3, 4, 6, 7, 8, 8)
9、a(1 to 3,1 to 3) :=5?
矩陣賦值
scala> b(1 to 2,1 to 3):= 6
res30: breeze.linalg.DenseMatrix[Int] =
6 ?6 ?6
6 ?6 ?6
scala> b
res31: breeze.linalg.DenseMatrix[Int] =
1 ?2 ?3 ?4 ?5 ?6
2 ?6 ?6 ?6 ?6 ?7
3 ?6 ?6 ?6 ?7 ?8
10、a(::,2) := 5?
矩陣列賦值
scala> b(::,2) := 7
res32: breeze.linalg.DenseVector[Int] = DenseVector(7, 7, 7)
scala> b
res33: breeze.linalg.DenseMatrix[Int] =
1 ?2 ?7 ?4 ?5 ?6
2 ?6 ?7 ?6 ?6 ?7
3 ?6 ?7 ?6 ?7 ?8
11、DenseMatrix.vertcat(a,b)?
垂直合并
12、DenseMatrix.horzcat(d,e)?
水平合并
13、DenseVector.vertvat(a,b)?
向量連接
數值計算
求和函數
布爾函數
線性代數
一些很基礎的函數,很實用。
---------------------?
作者:茁壯小草?
來源:CSDN?
原文:https://blog.csdn.net/xxzhangx/article/details/74066679?
版權聲明:本文為博主原創文章,轉載請附上博文鏈接!
總結
以上是生活随笔為你收集整理的spark | scala | 线性代数库Breeze学习的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: indices should be on
- 下一篇: Spark学习笔记:数据读取和保存