日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

bert 句向量 的 各向异性问题 及与 对比学习 的联系

發布時間:2024/1/18 编程问答 42 豆豆
生活随笔 收集整理的這篇文章主要介紹了 bert 句向量 的 各向异性问题 及与 对比学习 的联系 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

? ? ? ? 本文主要介紹了 為什么基于bert產出的句向量,在語義相似相關的任務上表現較差的原因及相關解釋(各向異性,表示退化,錐形空間),另外介紹了simcse 中 論述的 對比學習 與 各向異性 的聯系。

????????主要是涉及的相關論文和主要論點,留存用。

目錄

問題引入:

相關論文解釋:

1. REPRESENTATION DEGENERATION PROBLEM IN TRAINING NATURAL LANGUAGE GENERATION MODELS

2. bert-flow : chap2 : Understanding the Sentence Embedding Space of BERT

2.1 The Connection between Semantic Similarity and BERT Pre-training :

2.2 Anisotropic Embedding Space Induces Poor Semantic Similarity:

3. simcse : chap5 : Connection to Anisotropy

4. Alignment and Uniformity

相關論文:



問題引入:

why do the BERT-induced sentence embeddings perform poorly to retrieve semantically similar sentences?

即,為什么基于bert,來產出句向量,在語義相似相關的任務上表現極差?

Reimers and Gurevych (2019) demonstrate that such BERT sentence embeddings lag behind the state-of-the-art sentence embeddings in terms of semantic similarity. On the STS-B dataset, BERT sentence embeddings are even less competitive to averaged GloVe (Pennington et al., 2014) embed- dings, which is a simple and non-contextualized baseline proposed several years ago.

相關論文解釋:

1. REPRESENTATION DEGENERATION PROBLEM IN TRAINING NATURAL LANGUAGE GENERATION MODELS

主要引進了表示退化問題(各向異性)

We observe that when training a model for natural language genera- tion tasks through likelihood maximization with the weight tying trick, especially with big training datasets, most of the learnt word embeddings tend to degenerate and be distributed into a narrow cone, which largely limits the representation power of word embeddings.

......

2. bert-flow : chap2 : Understanding the Sentence Embedding Space of BERT

主要介紹了bert類預訓練任務和語義相似的聯系,以及對語義相似表現較差的分析

2.1 The Connection between Semantic Similarity and BERT Pre-training :

  • The similarity between BERT sentence embed- dings can be reduced to the similarity betweenT2BERT context embeddings hc hc′ . However, as shown in Equation 1, the pretraining of BERT does not explicitly involve the computation of hTc hc′ . Therefore, we can hardly derive a mathematical formulation of what h?c hc′ exactly represents.
  • Co-Occurrence Statistics as the Proxy for Semantic Similarity: roughly speaking, it is semantically meaningful to compute the dot product be- tween a context embedding and a word embedding
  • Higher-Order Co-Occurrence Statistics as Context-Context Semantic Similarity: During pretraining, the semantic relationship between two contexts c and c′ could be inferred and reinforced with their connections to words.

2.2 Anisotropic Embedding Space Induces Poor Semantic Similarity:

  • To investigate the underlying problem of the fail- ure, we use word embeddings as a surrogate be- cause words and contexts share the same embed- ding space. If the word embeddings exhibits some misleading properties, the context embeddings will also be problematic, and vice versa.
  • Gao et al. (2019) and Wang et al. (2020) have pointed out that, for language modeling, the max- imum likelihood training with Equation 1 usually produces an anisotropic word embedding space. “Anisotropic” means word embeddings occupy a narrow cone in the vector space.
  • Observation 1: Word Frequency Biases the Embedding Space
  • Observation 2: Low-Frequency Words Dis- perse Sparsely We observe that, in the learned anisotropic embedding space, high-frequency words concentrates densely and low-frequency words disperse sparsely.
  • Due to the sparsity, many “holes” could be formed around the low-frequency word embed- dings in the embedding space, where the semantic meaning can be poorly defined. Note that BERT sentence embeddings are produced by averaging the context embeddings, which is a convexity- preserving operation. However, the holes violate the convexity of the embedding space

3. simcse : chap5 : Connection to Anisotropy

主要介紹了simcse 與各向異性的聯系,及為什么simcse會有效

we take a singular spectrum perspective—which is a common practice in analyzing word embeddings (Mu and Viswanath, 2018; Gao et al., 2019; Wang et al., 2020), and show that the contrastive objective can “flatten” the singular value distribution of sentence embeddings and make the representations more isotropic.

......

4. Alignment and Uniformity

主要引進了Alignment and Uniformity 來分析和評估(訓練)句向量

......

相關論文:

  • Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tieyan Liu. 2019. Representation degenera- tion problem in training natural language generation models. In International Conference on Learning Representations (ICLR).
  • https://openreview.net/pdf?id=ByxY8CNtvr?: IMPROVING NEURAL LANGUAGE GENERATION WITH SPECTRUM CONTROL
  • bert-flow: On the Sentence Embeddings from Pre-trained Language Models
  • SimCSE: Simple Contrastive Learning of Sentence Embeddings
  • http://proceedings.mlr.press/v119/wang20k/wang20k.pdf Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere

總結

以上是生活随笔為你收集整理的bert 句向量 的 各向异性问题 及与 对比学习 的联系的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。

主站蜘蛛池模板: 女性私密整形视频 | 91免费 看片 | 影音先锋中文字幕一区 | 懂色av一区二区三区蜜臀 | 黄色a一级 | 久久综合九九 | 美女被娇喘流出白 | 好吊一区二区三区 | 欧美不卡一二三 | 午夜寂寞影视 | 国产精品视频播放 | av在线看片| 哪里可以免费看av | 成人午夜av | 久久久精品人妻一区二区三区 | 在线99热 | 激情一级片 | 非洲一级黄色片 | 九九夜| 69人人| 欧美刺激性大交 | 91精品国产欧美一区二区 | 婷婷色一区二区三区 | 国产精品资源网站 | 亚洲乱码国产乱码精品精大量 | 美国黄色一级视频 | 操女人网 | 国产精品日日摸夜夜爽 | 清纯唯美亚洲 | 日日夜夜网 | 日韩精品人妻无码一本 | 欧美色图19p | 舒淇裸体午夜理伦 | 毛片在线观看网站 | 欧美日韩精品二区 | 成人久久毛片 | jizzjizz视频 | 久久久久国产精品人妻 | 国产又黄又猛的视频 | 亚洲第一色站 | 日本午夜视频 | 成人靠逼视频 | 亚洲综合视频在线观看 | 久久精品九九 | 国产又粗又黄又爽又硬的视频 | 午夜av一区二区三区 | 欧美xxxx吸乳 | 四虎影视精品 | 国产免费无遮挡 | 免费在线观看高清影视网站 | 精品人妻一区二区免费视频 | 狼人av在线 | 非洲黑人狂躁日本妞 | 免费在线观看av网站 | 国产一区二区三区影院 | 校园激情亚洲 | 美痴女~美人上司北岛玲 | 又黄又爽的网站 | 台湾佬美性中文娱乐 | 污污污www精品国产网站 | 日本黄色电影网址 | www.jizzjizz.com| 91传媒在线播放 | 理论片第一页 | 午夜影院免费视频 | 成人免费毛片入口 | 日韩一区精品 | 日本www视频在线观看 | 久久久久久一区二区三区 | 成人午夜视频在线 | 男人的av| 91国内精品久久久 | 91手机在线视频 | av香港经典三级级 在线 | 奇米成人 | 97久久国产精品 | 日本精品人妻无码免费大全 | 欧美a在线看 | 午夜激情亚洲 | 黄色激情在线观看 | av波多野吉衣 | 日韩精品一区二区在线视频 | 成人乱人乱一区二区三区一级视频 | 性生活视频网站 | 性色一区二区三区 | 中文字幕在线字幕中文 | 久久久精品 | 欧美日韩精品一区二区三区 | 有码中文字幕 | 日韩欧美一区二区在线观看 | 香港三级日本三级三69 | 久久网一区 | 国产精品久久久999 www日本高清视频 | 人人干天天干 | 成人国产精品久久 | 中文字幕dvd | 黄色资源网 | 欧美国产日韩精品 | 综合在线观看 |