日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 运维知识 > windows >内容正文

windows

白话 Pulsar Bookkeeper 的存储模型

發布時間:2024/1/18 windows 30 coder
生活随笔 收集整理的這篇文章主要介紹了 白话 Pulsar Bookkeeper 的存储模型 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

最近我們的 Pulsar 存儲有很長一段時間數據一直得不到回收,但消息確實已經是 ACK 了,理論上應該是會被回收的,隨著時間流逝不但沒回收還一直再漲,最后在沒找到原因的情況下就只有一直不停的擴容。

最后磁盤是得到了回收,過程先不表,之后再討論。

為了防止類似的問題再次發生,我們希望可以監控到磁盤維度,能夠列出各個日志文件的大小以及創建時間。

這時就需要對 Pulsar 的存儲模型有一定的了解,也就有了這篇文章。


講到 Pulsar 的存儲模型,本質上就是 Bookkeeper 的存儲模型。

Pulsar 所有的消息讀寫都是通過 Bookkeeper 實現的。

Bookkeeper 是一個可擴展、可容錯、低延遲的日志存儲數據庫,基于 Append Only 模型。(數據只能追加不能修改)

這里我利用 Pulsar 和 Bookkeeper 的 Admin API 列出了 Broker 和 BK 中 Ledger 分別占用的磁盤空間。

關于這個如何獲取和計算的,后續也準備提交給社區。

背景

但和我們實際 kubernetes 中的磁盤占用量依然對不上,所以就想看看在 BK 中實際的存儲日志和 Ledger 到底差在哪里。

知道 Ledger 就可以通過 Ledger 的元數據中找到對應的 topic,從而判斷哪些 topic 的數據導致統計不能匹配。

Bookkeeper 有提提供一個Admin API 可以返回當前 BK 所使用了哪些日志文件的接口:
https://bookkeeper.apache.org/docs/admin/http#endpoint-apiv1bookielist_disk_filefile_typetype

從返回的結果可以看出,落到具體的磁盤上只有一個文件名稱,是無法知道具體和哪些 Ledger 進行關聯的,也就無法知道具體的 topic 了。

此時只能大膽假設,應該每個文件和具體的消息 ID 有一個映射關系,也就是索引。
所以需要搞清楚這個索引是如何運行的。

存儲模型

我查閱了一些網上的文章和源碼大概梳理了一個存儲流程:

  1. BK 收到寫入請求,數據會異步寫入到 Journal/Entrylog
  2. Journal 直接順序寫入,并且會快速清除已經寫入的數據,所以需要的磁盤空間不多(所以從監控中其實可以看到 Journal 的磁盤占有率是很低的)。
  3. 考慮到會隨機讀消息,EntryLog 在寫入前進行排序,保證落盤的數據中同一個 Ledger 的數據盡量挨在一起,充分利用 PageCache.
  4. 最終數據的索引通過 LedgerId+EntryId 生成索引信息存放到 RockDB 中(Pulsar 的場景使用的是 DbLedgerStorage 實現)。
  5. 讀取數據時先從獲取索引,然后再從磁盤讀取數據。
  6. 利用 JournalEntryLog 實現消息的讀寫分離。

簡單來說 BK 在存儲數據的時候會進行雙寫,Journal 目錄用于存放寫的數據,對消息順序沒有要求,寫完后就可以清除了。

Entry 目錄主要用于后續消費消息進行讀取使用,大部分場景都是順序讀,畢竟我們消費消息的時候很少會回溯,所以需要充分利用磁盤的 PageCache,將順序的消息盡量的存儲在一起。

同一個日志文件中可能會存放多個 Ledger 的消息,這些數據如果不排序直接寫入就會導致亂序,而消費時大概率是順序的,但具體到磁盤的表現就是隨機讀了,這樣讀取效率較低。

所以我們使用 Helm 部署 Bookkeeper 的時候需要分別指定 journalledgers 的目錄

volumes:  
  # use a persistent volume or emptyDir  
  persistence: true  
  journal:  
    name: journal  
    size: 20Gi  
    local_storage: false  
    multiVolumes:  
      - name: journal0  
        size: 10Gi  
        # storageClassName: existent-storage-class  
        mountPath: /pulsar/data/bookkeeper/journal0  
      - name: journal1  
        size: 10Gi  
        # storageClassName: existent-storage-class  
        mountPath: /pulsar/data/bookkeeper/journal1  
  ledgers:  
    name: ledgers  
    size: 50Gi  
    local_storage: false  
    storageClassName: sc
    # storageClass:  
      # ...    useMultiVolumes: false  
    multiVolumes:  
      - name: ledgers0  
        size: 1000Gi  
        # storageClassName: existent-storage-class  
        mountPath: /pulsar/data/bookkeeper/ledgers0  
      - name: ledgers1  
        size: 1000Gi  
        # storageClassName: existent-storage-class  
        mountPath: /pulsar/data/bookkeeper/ledgers1


每次在寫入和讀取數據的時候都需要通過消息 ID 也就是 ledgerId 和 entryId 來獲取索引信息。

也印證了之前索引的猜測。

所以借助于 BK 讀寫分離的特性,我們還可以單獨優化存儲。

比如寫入 Journal 的磁盤因為是順序寫入,所以即便是普通的 HDD 硬盤速度也很快。

大部分場景下都是讀大于寫,所以我們可以單獨為 Ledger 分配高性能 SSD 磁盤,按需使用。

因為在最底層的日志文件中無法直接通過 ledgerId 得知占用磁盤的大小,所以我們實際的磁盤占用率對不上的問題依然沒有得到解決,這個問題我還會持續跟進,有新的進展再繼續同步。

總結

以上是生活随笔為你收集整理的白话 Pulsar Bookkeeper 的存储模型的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。