日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

机器学习-有监督学习-分类算法:k-近邻(KNN)算法【多分类】【使用场景: 小数据场景/小样本学习,几千~几万样本】【使用faiss库实现快速计算KNN】

發布時間:2024/1/18 编程问答 33 豆豆

一、K-近鄰算法簡介

1、K-近鄰算法(KNN)概念

KNN可以說是最簡單的分類算法之一,同時,它也是最常用的分類算法之一,注意KNN算法是有監督學習中的分類算法,它看起來和另一個機器學習算法Kmeans有點像(Kmeans是無監督學習算法),但卻是有本質區別的。那么什么是KNN算法呢,接下來我們就來介紹介紹吧。

k-近鄰算法:如果一個樣本在特征空間中的k個最相似(即特征空間中最鄰近)的樣本中的大多數屬于某一個類別,則該樣本也屬于這個類別。
相似的樣本,同一特征的值應該是相近的。
k的取值會影響結果。
就是通過你的"鄰居"來判斷你屬于哪個類別。
如何計算你到你的"鄰居"的距離:一般時候,都是使用歐氏距離

KNN的全稱是K Nearest Neighbors,意思是K個最近的鄰居,從這個名字我們就能看出一些KNN算法的蛛絲馬跡了。K個最近鄰居,毫無疑問,K的取值肯定是至關重要的。那么最近的鄰居又是怎么回事呢?其實啊,KNN的原理就是當預測一個新的值x的時候,根據它距離最近的K個點是什么類別來判斷x屬于哪個類別。聽起來有點繞,還是看看圖吧。

圖中綠色的點就是我們要預測的那個點,假設K=3。那么KNN算法就會找到與它距離最近的三個點(這里用圓圈把它圈起來了),看看哪種類別多

總結

以上是生活随笔為你收集整理的机器学习-有监督学习-分类算法:k-近邻(KNN)算法【多分类】【使用场景: 小数据场景/小样本学习,几千~几万样本】【使用faiss库实现快速计算KNN】的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。