日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程资源 > 编程问答 >内容正文

编程问答

TensorFlow学习笔记(十一)读取自己的数据进行训练

發布時間:2024/1/23 编程问答 25 豆豆
生活随笔 收集整理的這篇文章主要介紹了 TensorFlow学习笔记(十一)读取自己的数据进行训练 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

1. 線性關系

數據csv文件讀取

x,y
1,2
4,5
6,11
3,6
4,7
5,12
7,13
10,21
11,23
24,50
45,89
50,101
55,111
60,123
70,139
80,164
85,171
90,192
95,190
100,199
200,401
1000,2000

代碼:

# -*- coding: utf-8 -*-
"""
Created on Fri Jul 28 15:43:41 2017

@author: ESRI
"""

# -*- coding: utf-8 -*-
"""
Created on Fri Jul 28 14:59:10 2017

@author: ESRI
"""

import pandas as pd
import tensorflow as tf
import matplotlib.pyplot as plt



#讀取數據
dataset = pd.read_csv('E:\\testData\\network.csv')

#查看描述信息
print(dataset.describe())
#查看前5行
print(dataset.head())
#查看數據形狀
print(dataset.shape)

#分別得到
X_data = dataset['x'].as_matrix(columns=None).reshape(-1,1)
#print(X_data)
Y_data = dataset['y'].as_matrix(columns=None).reshape(-1,1)


#添加一層網絡
def add_layer(inputs, in_size, out_size, activation_function=None):
??? # add one more layer and return the output of this layer
??? Weights = tf.Variable(tf.random_normal([in_size, out_size]))
??? biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
??? Wx_plus_b = tf.matmul(inputs, Weights) + biases
??? if activation_function is None:
??????? outputs = Wx_plus_b
??? else:
??????? outputs = activation_function(Wx_plus_b)
??? return outputs


#歸一化
def normalize(train):
??? mean, std = train.mean(), train.std()
??? train = (train - mean) / std
??? return train

xs = tf.placeholder(tf.float32)
ys = tf.placeholder(tf.float32)

#歸一化處理數據
X = normalize(X_data)
Y = normalize(Y_data)




#3層網絡
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, activation_function=None)

#計算loss
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
???????????????????? reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

# important step
#init = tf.initialize_all_variables()
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
#結果可視化
# plot the real data
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(X, Y)
plt.ion()
plt.show()


for i in range(8000):
??? # training
??? sess.run(train_step, feed_dict={xs: X, ys: Y})
??? if i % 50 == 0:
??????? print(sess.run(loss, feed_dict={xs: X, ys: Y}))
??????? try:
??????????? ax.lines.remove(lines[0])
??????? except Exception:
??????????? pass
??????? prediction_value = sess.run(prediction, feed_dict={xs: X})
??????? # plot the prediction
??????? lines = ax.plot(X, prediction_value, 'r-', lw=5)
??????? plt.pause(0.1)

?結果: ???
??????????????????? x??????????? y
count??? 22.000000??? 22.000000
mean???? 91.136364?? 183.181818
std???? 208.740051?? 417.486314
min?????? 1.000000???? 2.000000
25%?????? 6.250000??? 12.250000
50%????? 47.500000??? 95.000000
75%????? 83.750000?? 169.250000
max??? 1000.000000? 2000.000000
????? x??? y
0???? 1??? 2
1???? 4??? 5
2???? 6?? 11
3???? 3??? 6
4???? 4??? 7
5???? 5?? 12
6???? 7?? 13
7??? 10?? 21
8??? 11?? 23
9??? 24?? 50
10?? 45?? 89
11?? 50? 101
12?? 55? 111
13?? 60? 123
14?? 70? 139
15?? 80? 164
16?? 85? 171
17?? 90? 192
18?? 95? 190
19? 100? 199
(22, 2)
[[-0.4419732 ]
?[-0.42726305]
?[-0.41745628]
?...,
?[ 0.04346181]
?[ 0.53380021]
?[ 4.45650743]]


11.6106
0.00154685
0.00107705
0.000622838
0.000468779
0.000346998
0.000274857
0.00016539
9.39608e-05
6.02521e-05
4.41742e-05
3.47886e-05
3.02667e-05
2.81042e-05
2.73301e-05
2.69677e-05
2.67462e-05
2.66131e-05
2.6452e-05
2.63586e-05
2.63102e-05
2.61975e-05
2.61691e-05
2.61784e-05
2.61712e-05
2.61596e-05
2.61267e-05
2.61323e-05
2.61504e-05
2.61072e-05
2.61337e-05
2.61305e-05
2.60892e-05
2.60815e-05
2.6096e-05
2.60919e-05
2.60685e-05
2.60606e-05
2.60774e-05
2.61023e-05
2.60717e-05
2.60601e-05
2.60832e-05
2.60474e-05
2.60752e-05
2.60568e-05
2.60328e-05
2.60716e-05
2.60527e-05
2.60288e-05
2.60224e-05
2.60488e-05
2.60549e-05
2.60573e-05
2.60576e-05
2.60556e-05
2.60509e-05
2.60434e-05
2.60333e-05
2.60186e-05
2.60025e-05
2.60154e-05
2.60487e-05
2.60329e-05
2.59924e-05
2.60066e-05
2.60364e-05
2.60053e-05
2.60045e-05
2.60256e-05
2.5987e-05
2.60303e-05
2.59782e-05
2.603e-05
2.59753e-05
2.60242e-05
2.59781e-05
2.60142e-05
2.59865e-05
2.59966e-05
2.6021e-05
2.59726e-05
2.59987e-05
2.6012e-05
2.59699e-05
2.59885e-05
2.60072e-05
2.59776e-05
2.59591e-05
2.59867e-05
2.59993e-05
2.59841e-05
2.59637e-05
2.59506e-05
2.59757e-05
2.59872e-05
2.59941e-05
2.5992e-05
2.59636e-05
2.59547e-05
2.59475e-05
2.59412e-05
2.59377e-05
2.59612e-05
2.59653e-05
2.59678e-05
2.59692e-05
2.59695e-05
2.59691e-05
2.59679e-05
2.59662e-05
2.59643e-05
2.59615e-05
2.59585e-05
2.59546e-05
2.59497e-05
2.5937e-05
2.59175e-05
2.59209e-05
2.59248e-05
2.59291e-05
2.5935e-05
2.59458e-05
2.59611e-05
2.59533e-05
2.59444e-05
2.59316e-05
2.59077e-05
2.59154e-05
2.59242e-05
2.59549e-05
2.59445e-05
2.59325e-05
2.58975e-05
2.59079e-05
2.59221e-05
2.59423e-05
2.59288e-05
2.58909e-05
2.5903e-05
2.59232e-05
2.59314e-05
2.59115e-05
2.58939e-05
2.59115e-05
2.59273e-05
2.59065e-05
2.589e-05
2.59133e-05
2.59185e-05
2.58759e-05
2.58929e-05
2.59227e-05
2.59028e-05
2.58816e-05
2.59242e-05
2.59048e-05
2.58738e-05
2.59005e-05
2.59029e-05??? ?
??

總結

以上是生活随笔為你收集整理的TensorFlow学习笔记(十一)读取自己的数据进行训练的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。