日韩性视频-久久久蜜桃-www中文字幕-在线中文字幕av-亚洲欧美一区二区三区四区-撸久久-香蕉视频一区-久久无码精品丰满人妻-国产高潮av-激情福利社-日韩av网址大全-国产精品久久999-日本五十路在线-性欧美在线-久久99精品波多结衣一区-男女午夜免费视频-黑人极品ⅴideos精品欧美棵-人人妻人人澡人人爽精品欧美一区-日韩一区在线看-欧美a级在线免费观看

歡迎訪問 生活随笔!

生活随笔

當前位置: 首頁 > 编程语言 > python >内容正文

python

python数据分析之pandas里的Series

發布時間:2024/1/23 python 36 豆豆
生活随笔 收集整理的這篇文章主要介紹了 python数据分析之pandas里的Series 小編覺得挺不錯的,現在分享給大家,幫大家做個參考.

1 Series


線性的數據結構,series是一個一維數組

Pandas會默認用0到-1來作為series的index,但也可以自己指定index(可以把index理解為dict里面的key)

1.1 創造一個series數據

import pandas as pd import numpy as nps = pd.Series([9, 'zheng', 'beijing', 128])print(s)
  • 打印

0? ? ? ? ?9

1? ? ? ? zheng

2? ? ? ? ?beijing

3? ? ? ? 128

dtype: object

  • 訪問其中某個數據

print(s[1:2])

# 打印

1? ? zheng

dtype: object

1.2 指定index

import pandas as pd import numpy as nps = pd.Series([9, 'zheng', 'beijing', 128, 'usa', 990], index=[1,2,3,'e','f','g'])print(s)
  • 打印
1 9 2 zheng 3 beijing e 128 f usa g 990 dtype: object
  • 根據索引值找出值

print(s['f'])? ?# usa

1.3 用dictionary構造一個series

import pandas as pd import numpy as nps = {"ton": 20, "mary": 18, "jack": 19, "car": None}sa = pd.Series(s, name="age")print(sa)
  • 打印
car NaN jack 19.0 mary 18.0 ton 20.0 Name: age, dtype: float64
  • 檢測類型

print(type(sa))? ?# <class 'pandas.core.series.Series'>

1.4 用numpy ndarray構造一個Series

  • 生成一個隨機數
import pandas as pd import numpy as npnum_abc = pd.Series(np.random.randn(5), index=list('abcde')) num = pd.Series(np.random.randn(5))print(num) print(num_abc)# 打印 0 -0.102860 1 -1.138242 2 1.408063 3 -0.893559 4 1.378845 dtype: float64 a -0.658398 b 1.568236 c 0.535451 d 0.103117 e -1.556231 dtype: float64

1.5 選擇數據

import pandas as pd import numpy as nps = pd.Series([9, 'zheng', 'beijing', 128, 'usa', 990], index[1,2,3,'e', 'f', 'g'])print(s[1:3]) # 選擇第1到3個,包左不包右 zhehg beijing print(s[[1,3]]) # 選擇第1個和第3個,zheng 128 print(s[:-1]) #選擇第1個到倒數第1個, 9 zheng beijing 128 usa

1.6 操作數據

import pandas as pd import numpy as nps = pd.Series([9, 'zheng', 'beijing', 128, 'usa', 990], index=[1,2,3,'e','f','g'])sum = s[1:3] + s[1:3] sum1 = s[1:4] + s[1:4] sum2 = s[1:3] + s[1:4] sum3 = s[:3] + s[1:]print(sum) print(sum1) print(sum2) print(sum3)
  • 打印
2 zhengzheng 3 beijingbeijing dtype: object 2 zhengzheng 3 beijingbeijing e 256 dtype: object 2 zhengzheng 3 beijingbeijing e NaN dtype: object 1 NaN 2 zhengzheng 3 beijingbeijing e NaN f NaN g NaN dtype: object

1.7 查找

  • 是否存在

USA in s # true

  • 范圍查找
import pandas as pd import numpy as nps = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}sa = pd.Series(s, name="age")print(sa[sa>19])

  • 中位數
import pandas as pd import numpy as nps = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}sa = pd.Series(s, name="age")print(sa.median()) # 20
  • 判斷是否大于中位數
import pandas as pd import numpy as nps = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}sa = pd.Series(s, name="age")print(sa>sa.median())

找出大于中位數的數

import pandas as pd import numpy as nps = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}sa = pd.Series(s, name="age")print(sa[sa > sa.median()])

  • 中位數
import pandas as pd import numpy as nps = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}sa = pd.Series(s, name="age")more_than_midian = sa>sa.median()print(more_than_midian)print('---------------------')print(sa[more_than_midian])

1.8 Series賦值

import pandas as pd import numpy as nps = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}sa = pd.Series(s, name="age")print(s)print('-----------------')sa['ton'] = 99print(sa)

1.9 滿足條件的統一賦值

import pandas as pd import numpy as nps = {"ton": 20, "mary": 18, "jack": 19, "jim": 22, "lj": 24, "car": None}sa = pd.Series(s, name="age")print(s) # 打印原字典print('---------------') # 分割線sa[sa>19] = 88 # 將所有大于19的統一改為88print(sa) #打印更改之后的數據print('-------------------') # 分割線print(sa / 2) # 將所有數據除以2

?

總結

以上是生活随笔為你收集整理的python数据分析之pandas里的Series的全部內容,希望文章能夠幫你解決所遇到的問題。

如果覺得生活随笔網站內容還不錯,歡迎將生活随笔推薦給好友。