IIC、SPI和UART区别
第一個區別當然是名字:
?????SPI(Serial Peripheral Interface:串行外設接口);
?????I2C(INTER IC BUS)
?????UART(Universal Asynchronous Receiver Transmitter:通用異步收發器)
第二,區別在電氣信號線上:
?????SPI總線由三條信號線組成:串行時鐘(SCLK)、串行數據輸出(SDO)、串行數據輸入(SDI)。SPI總線可以實現多個SPI設備互相連接。提供SPI串行時鐘的SPI設備為SPI主機或主設備(Master),其他設備為SPI從機或從設備(Slave)。主從設備間可以實現全雙工通信,當有多個從設備時,還可以增加一條從設備選擇線。
?????如果用通用IO口模擬SPI總線,必須要有一個輸出口(SDO),一個輸入口(SDI),另一個口則視實現的設備類型而定,如果要實現主從設備,則需輸入輸出口,若只實現主設備,則需輸出口即可,若只實現從設備,則只需輸入口即可。
?????I2C總線是雙向、兩線(SCL、SDA)、串行、多主控(multi-master)接口標準,具有總線仲裁機制,非常適合在器件之間進行近距離、非經常性的數據通信。在它的協議體系中,傳輸數據時都會帶上目的設備的設備地址,因此可以實現設備組網。
?????如果用通用IO口模擬I2C總線,并實現雙向傳輸,則需一個輸入輸出口(SDA),另外還需一個輸出口(SCL)。(注:I2C資料了解得比較少,這里的描述可能很不完備)
?????UART總線是異步串口,因此一般比前兩種同步串口的結構要復雜很多,一般由波特率產生器(產生的波特率等于傳輸波特率的16倍)、UART接收器、UART發送器組成,硬件上由兩根線,一根用于發送,一根用于接收。
?????顯然,如果用通用IO口模擬UART總線,則需一個輸入口,一個輸出口。
第三,從第二點明顯可以看出,SPI和UART可以實現全雙工,但I2C不行;
第四,看看牛人們的意見吧!
?????wudanyu:I2C線更少,我覺得比UART、SPI更為強大,但是技術上也更加麻煩些,因為I2C需要有雙向IO的支持,而且使用上拉電阻,我覺得抗干擾能力較弱,一般用于同一板卡上芯片之間的通信,較少用于遠距離通信。SPI實現要簡單一些,UART需要固定的波特率,就是說兩位數據的間隔要相等,而SPI則無所謂,因為它是有時鐘的協議。
?????quickmouse:I2C的速度比SPI慢一點,協議比SPI復雜一點,但是連線也比標準的SPI要少。
?
SPI總線
SPI總線簡介
同步外設接口(SPI)是由摩托羅拉公司開發的全雙工同步串行總線,該總線大量用在與EEPROM、ADC、FRAM和顯示驅動器之類的慢速外設器件通信。
SPI(Serial Peripheral Interface)是一種串行同步通訊協議,由一個主設備和一個或多個從設備組成,主設備啟動一個與從設備的同步通訊,從而完成數據的交換。SPI 接口由SDI(串行數據輸入),SDO(串行數據輸出),SCK(串行移位時鐘),CS(從使能信號)四種信號構成,CS 決定了唯一的與主設備通信的從設備,如沒有CS 信號,則只能存在一個從設備,主設備通過產生移位時鐘來發起通訊。通訊時,數據由SDO 輸出,SDI 輸入,數據在時鐘的上升或下降沿由SDO 輸出,在緊接著的下降或上升沿由SDI 讀入,這樣經過8/16 次時鐘的改變,完成8/16 位數據的傳輸。
SPI通信
該總線通信基于主-從配置。它有以下4個信號:
MOSI:主出/從入
MISO:主入/從出
SCK:串行時鐘
SS:從屬選擇
芯片上“從屬選擇”(slave-select)的引腳數決定了可連到總線上的器件數量。
????????在SPI傳輸中,數據是同步進行發送和接收的。數據傳輸的時鐘基于來自主處理器的時鐘脈沖,摩托羅拉沒有定義任何通用SPI的時鐘規范。然而,最常用的時鐘設置基于時鐘極性(CPOL)和時鐘相位(CPHA)兩個參數,CPOL定義SPI串行時鐘的活動狀態,而CPHA定義相對于SO-數據位的時鐘相位。CPOL和CPHA的設置決定了數據取樣的時鐘沿。
數據方向和通信速度
????????SPI傳輸串行數據時首先傳輸最高位。波特率可以高達5Mbps,具體速度大小取決于SPI硬件。例如,Xicor公司的SPI串行器件傳輸速度能達到5MHz。
SPI總線接口及時序
SPI總線包括1根串行同步時鐘信號線以及2根數據線。
SPI模塊為了和外設進行數據交換,根據外設工作要求,其輸出串行同步時鐘極性和相位可以進行配置,時鐘極性(CPOL)對傳輸協議沒有重大的影響。如果CPOL=0,串行同步時鐘的空閑狀態為低電平;如果CPOL=1,串行同步時鐘的空閑狀態為高電平。時鐘相位(CPHA)能夠配置用于選擇兩種不同的傳輸協議之一進行數據傳輸。如果CPHA=0,在串行同步時鐘的第一個跳變沿(上升或下降)數據被采樣;如果CPHA=1,在串行同步時鐘的第二個跳變沿(上升或下降)數據被采樣。SPI主模塊和與之通信的外設備時鐘相位和極性應該一致。SPI主模塊和與之通信的外設備時鐘相位和極性應該一致。個人理解這句話有2層意思:其一,主設備SPI時鐘和極性的配置應該由外設來決定;其二,二者的配置應該保持一致,即主設備的SDO同從設備的SDO配置一致,主設備的SDI同從設備的SDI配置一致。因為主從設備是在SCLK的控制下,同時發送和接收數據,并通過2個雙向移位寄存器來交換數據。SPI接口時序如圖3、圖4所示。
SPI是一個環形總線結構,由ss(cs)、sck、sdi、sdo構成,其時序其實很簡單,主要是在sck的控制下,兩個雙向移位寄存器進行數據交換。
??????假設下面的8位寄存器裝的是待發送的數據10101010,上升沿發送、下降沿接收、高位先發送。
??????那么第一個上升沿來的時候數據將會是sdo=1;寄存器=0101010x。下降沿到來的時候,sdi上的電平將所存到寄存器中去,那么這時寄存器=0101010sdi,這樣在8個時鐘脈沖以后,兩個寄存器的內容互相交換一次。這樣就完成里一個spi時序。
??????例子:
??????假設主機和從機初始化就緒:并且主機的sbuff=0xaa,從機的sbuff=0x55,下面將分步對spi的8個時鐘周期的數據情況演示一遍:假設上升沿發送數據
脈沖 主機sbuff 從機sbuff sdi sdo?
0 10101010 01010101 0 0
1上 0101010x 1010101x 0 1
1下 01010100 10101011 0 1
2上 1010100x 0101011x 1 0
2下 10101001 01010110 1 0
3上 0101001x 1010110x 0 1
3下 01010010 10101101 0 1
4上 1010010x 0101101x 1 0
4下 10100101 01011010 1 0
5上 0100101x 1011010x 0 1
5下 01001010 10110101 0 1
6上 1001010x 0110101x 1 0
6下 10010101 01101010 1 0
7上 0010101x 1101010x 0 1
7下 00101010 11010101 0 1
8上 0101010x 1010101x 1 0
8下 01010101 10101010 1 0
這樣就完成了兩個寄存器8位的交換,上面的上表示上升沿、下表示下降沿,sdi、sdo相對于主機而言的。其中ss引腳作為主機的時候,從機可以把它拉底被動選為從機,作為從機的是時候,可以作為片選腳用。根據以上分析,一個完整的傳送周期是16位,即兩個字節,因為,首先主機要發送命令過去,然后從機根據主機的名準備數據,主機在下一個8位時鐘周期才把數據讀回來
SPI 總線是Motorola公司推出的三線同步接口,同步串行3線方式進行通信:一條時鐘線SCK,一條數據輸入線MOSI,一條數據輸出線MISO;用于CPU與各種外圍器件進行全雙工、同步串行通訊。SPI主要特點有:可以同時發出和接收串行數據;可以當作主機或從機工作;提供頻率可編程時鐘;發送結束中斷標志;寫沖突保護;總線競爭保護等。圖3示出SPI總線工作的四種方式,其中使用的最為廣泛的是SPI0和SPI3方式(實線表示):
圖2???SPI總線四種工作方式
SPI模塊為了和外設進行數據交換,根據外設工作要求,其輸出串行同步時鐘極性和相位可以進行配置,時鐘極性(CPOL)對傳輸協議沒有重大的影響。如果CPOL=0,串行同步時鐘的空閑狀態為低電平;如果CPOL=1,串行同步時鐘的空閑狀態為高電平。時鐘相位(CPHA)能夠配置用于選擇兩種不同的傳輸協議之一進行數據傳輸。如果CPHA=0,在串行同步時鐘的第一個跳變沿(上升或下降)數據被采樣;如果CPHA=1,在串行同步時鐘的第二個跳變沿(上升或下降)數據被采樣。SPI主模塊和與之通信的外設音時鐘相位和極性應該一致。SPI接口時序如圖3、圖4所示。
二,.SPI功能模塊的設計
根據功能定義及SPI的工作原理,將整個IP Core分為8個子模塊:uC接口模塊、時鐘分頻模塊、發送數據FIFO模塊、接收數據FIFO模塊、狀態機模塊、發送數據邏輯模塊、接收數據邏輯模塊以及中斷形式模塊。
深入分析SPI的四種傳輸協議可以發現,根據一種協議,只要對串行同步時鐘進行轉換,就能得到其余的三種協議。為了簡化設計規定,如果要連續傳輸多個數據,在兩個數據傳輸之間插入一個串行時鐘的空閑等待,這樣狀態機只需兩種狀態(空閑和工作)就能正確工作。
SPI協議心得
SPI接口時鐘配置心得:
在主設備這邊配置SPI接口時鐘的時候一定要弄清楚從設備的時鐘要求,因為主設備這邊的時鐘極性和相位都是以從設備為基準的。因此在時鐘極性的配置上一定要搞清楚從設備是在時鐘的上升沿還是下降沿接收數據,是在時鐘的下降沿還是上升沿輸出數據。但要注意的是,由于主設備的SDO連接從設備的SDI,從設備的SDO連接主設備的SDI,從設備SDI接收的數據是主設備的SDO發送過來的,主設備SDI接收的數據是從設備SDO發送過來的,所以主設備這邊SPI時鐘極性的配置(即SDO的配置)跟從設備的SDI接收數據的極性是相反的,跟從設備SDO發送數據的極性是相同的。下面這段話是Sychip Wlan8100 Module Spec上說的,充分說明了時鐘極性是如何配置的:
The 81xx module will always input data bits at the rising edge of the clock, and the host will always output data bits on the falling edge of the clock.
意思是:主設備在時鐘的下降沿發送數據,從設備在時鐘的上升沿接收數據。因此主設備這邊SPI時鐘極性應該配置為下降沿有效。
又如,下面這段話是摘自LCD Driver IC SSD1289:
SDI is shifted into 8-bit shift register on every rising edge of SCK in the order of data bit 7, data bit 6 …… data bit 0.
意思是:從設備SSD1289在時鐘的上升沿接收數據,而且是按照從高位到地位的順序接收數據的。因此主設備的SPI時鐘極性同樣應該配置為下降沿有效。
時鐘極性和相位配置正確后,數據才能夠被準確的發送和接收。因此應該對照從設備的SPI接口時序或者Spec文檔說明來正確配置主設備的時鐘。
?
IIC一例子
IIC
型號?????容量??????器件/業面尋址字節???????????????????可尋址位???????模塊
24C01???128B??????(1010)(A2)(A1)(A0)(0或1)?????3????????????128B
24C02???256B??????(1010)(A2)(A1)(A0)(0或1)?????3????????????256B
24C04???512B??????(1010)(A2)(A1)(P0)(0或1)?????2????????????2X256B
24C08??1024B??????(1010)(A2)(P1)(P0)(0或1)?????1????????????4X256B
24C16??2048B??????(1010)(P2)(P1)(P0)(0或1)?????0????????????8X256B
解析:IIC總線接口器件24C系列非易失性存儲器與89C51接口采用軟件模擬IIC。24C系列
存儲器器件地址統一為1010XXXX,不要問為什么,這是廠家出廠的時候規定好的了。至
于24C的引腳功能和89C51的接口我就不多說了,本文的重點主要是如何應用。
??上面說了,器件的地址字節的高位是1010,那么低4位呢?先說最后一位吧,最后一
位為0的時候表示89C51要寫數據入存儲器,1的時候表示要從存儲器讀數據。還剩下中
三位A2,A1和A0。它們的高低電平取決于24C的A2,A1,A0是接高電平還是接地。A2,
A1 和A0有8個組合,因此可以擴展8個相同的器件,根據A2、A1、A0的不同,一樣的器件
也會有不同的地址。那么是不是每一個24C都可以擴展8個呢?不是的。注意上表,24C01
有三個可尋址位,A2,A1,A0,所以可以擴展8個,24C02也一樣。而04則只可以擴展4個
08只可以擴展2個,16就沒有擴展了,只可以掛一片24C16。為什么呢?因為訪問24C系列
除了訪問器件地址外,還要訪問器件內的字節的地址。例如24C01,要對其操作,就先選
選中它的地址,然后操作第一個字節或其他字節,這些字節也是有地址的,分模塊,用
一個字節表示,最多可以操作256個字節。24C01和24C02不大于256個字節,對其操作就
簡單得多了。但24C04,08和16呢?他們都大于256個字節,怎么辦?分模塊。注意到上
表的P0,P1,P3沒有?把04分成兩個模塊,2X256B,08四個模塊,16就八個模塊。究竟
怎么
模塊操作呢?拿24C08為例,有A2 P1 P0。A2只可以0或1,所以只能擴展2個24C08,其
內有4個256字節的模塊,要操作哪個模塊取決于P1,P0的組合。例如,24C08的地址字節
為1010000X第一個字節地址為0,第256個地址為255,如果地址字節是1010001X,那么第
256個字節的地址為0,第512個字節的地址為255。就如此。
????再用24C08舉例說明如何擴展,當兩個24C08的A2腳分別接高電平和地的時候,就可
以了,這樣就擴展了,他們的器件地址分別是1010000X和1010100X。當要讀第一個(A2
接地)
???24C08的的第一個模塊的數據時候,單片機先發送地址字節10100001;當要把數據寫
進第二個(A2接高電平)24C08的第二個模塊的時候,應發送10101010地址字節。
????
代碼:
#include <reg51.h>
#define WRITE 0xA0???????????????????????
#define READ??0xA1???????????????????????
#define BLOCK_SIZE????100?????????????????
#define uchar unsigned char
#define HIGH 1
#define LOW 0
#define FALSE 0
#define TRUE ~FALSE
sbit SCL????????????????=P3^4;??//T0???????
sbit SDA????????????????=P3^5;??//T1???????
uchar xdata EAROMImage[BLOCK_SIZE]={0};
void delayi2c( void ) {
????????;
}
void I_start( void ) {
????????SCL = HIGH ;
????????delayi2c() ;
????????SDA = LOW ;
????????delayi2c() ;
????????SCL = LOW ;
????????delayi2c() ;
}
void I_stop( void ) {
????????SDA = LOW ;
????????delayi2c() ;
????????SCL = HIGH ;
????????delayi2c() ;
????????SDA = HIGH ;
????????delayi2c() ;
????????SCL = LOW ;
????????delayi2c() ;
}
//初始化
void I_init( void ) {
????????SCL = LOW ;
????????I_stop() ;
}
bit I_clock( void ) {
????????bit sample ;
????????SCL = HIGH ;
????????delayi2c() ;
????????sample = SDA ;
????????SCL = LOW ;
????????delayi2c() ;
????????return ( sample ) ;
}
//發送8位數據
bit I_send( uchar I_data ) {
????????uchar i ;
???????
????????for ( i=0 ; i<8 ; i++ ) {
????????????????SDA = (bit)( I_data & 0x80 ) ;
????????????????I_data = I_data << 1 ;
????????????????I_clock() ;
????????}
???????
????????SDA = HIGH ;
????????return ( ~I_clock() );
??}
//接受8位數據
uchar I_receive( void ) {
????????uchar I_data = 0 ;
????????register uchar i ;
????????for ( i=0 ; i<8 ; i++ ) {
????????????????I_data *= 2 ;
????????????????if (I_clock()) I_data++ ;
????????}
????????return ( I_data ) ;
}
//應答
void I_Ack( void ) {
????????SDA = LOW;
????????I_clock();
????????SDA = HIGH;
}
?
void wait_5ms( void ) {
????????int i ;
????????for ( i=0 ; i<1000 ; i++ )
????{
????????????????;
????????}
}
//向24C04寫入器件地址和一個指定的字節地址。
bit E_address(uchar page ,uchar Address )
???{
????????I_start() ;
????????if ( I_send( WRITE +page) )
????????????????return ( I_send( Address ) ) ;
????????else
????????????????return ( FALSE ) ;
???}
//參數的含義:從第幾個模塊(不超過3),模塊中第幾個字節(不超過255)
//????????????寫到RAM映象的第幾個字節和讀的長度
bit E_read_block(uchar page, uchar addr,uchar arraypoint,uchar longth)
???{
????????uchar i ;
???????
????????if ( E_address(page, addr ) ) {
???????????????
????????????????I_start() ;
????????????????if ( I_send( READ+page ) ) {
????????????????????????for ( i=0; i<=longth ;i++ )
???????????????{
??????????????????EAROMImage[arraypoint+i] =I_receive();
????????????????????????????????if ( i != longth ) I_Ack() ;
????????????????????????????????else {
????????????????????????????????????????I_clock() ;
????????????????????????????????????????I_stop() ;
????????????????????????????????}
????????????????????????}
????????????????????????return ( TRUE ) ;
????????????????}
????????????????else {
????????????????????????I_stop() ;
????????????????????????return ( FALSE ) ;
????????????????}
????????}
????????else
????????????????I_stop() ;
????????????????return ( FALSE ) ;
}
bit E_write_block(uchar page,uchar addr,uchar arraypoint,uchar longth) {
????????uchar i ;
????????for ( i=addr; i<=addr+longth ; i++ ) {
????????????????if ( E_address(page,i) && I_send( EAROMImage[arraypoint+i-addr] ) ) {
????????????????????????I_stop() ;
????????????????????????wait_5ms();
????????????????}
????????????????else
????????????????????????return ( FALSE ) ;
????????}
????????return ( TRUE ) ;
}
//test
void??main() {
????????EAROMImage[39]=0xfe;
????SCON = 0x5a;???????
????TMOD = 0x20;?
????TCON = 0x69;?
????TH1 =??0xfd;
????????I_init();????????????????????????//??I2C 總線初始化
????????P1=0xFF;
???????
????????if (E_write_block(0,8,39,1))
?????????????????P1=0xFE;//p10
????????else
?????????????????{}
????????if (E_read_block(0,8,55,1))
????????????????{}
????????else
????????????????P1=P1&0xFD;
???????
????????if(EAROMImage[55]==0xfe)
????????P1=P1&0x0FB;
????while(1);
}
關于IIC總線
I2C(Inter-Integrated Circuit)總線是一種由PHILIPS公司開發的兩線式串行總線,用于連接微控制器及其外圍設備。I2C總線產生于在80年代,最初為音頻和視頻設備開發,如今主要在服務器管理中使用,其中包括單個組件狀態的通信。例如管理員可對各個組件進行查詢,以管理系統的配置或掌握組件的功能狀態,如電源和系統風扇。可隨時監控內存、硬盤、網絡、系統溫度等多個參數,增加了系統的安全性,方便了管理。
1 I2C總線特點
I2C總線最主要的優點是其簡單性和有效性。由于接口直接在組件之上,因此I2C總線占用的空間非常小,減少了電路板的空間和芯片管腳的數量,降低了互聯成本。總線的長度可高達25英尺,并且能夠以10Kbps的最大傳輸速率支持40個組件。I2C總線的另一個優點是,它支持多主控(multimastering),其中任何能夠進行發送和接收的設備都可以成為主總線。一個主控能夠控制信號的傳輸和時鐘頻率。當然,在任何時間點上只能有一個主控。
2 I2C總線工作原理
2.1 總線的構成及信號類型
I2C總線是由數據線SDA和時鐘SCL構成的串行總線,可發送和接收數據。在CPU與被控IC之間、IC與IC之間進行雙向傳送,最高傳送速率100kbps。各種被控制電路均并聯在這條總線上,但就像電話機一樣只有撥通各自的號碼才能工作,所以每個電路和模塊都有唯一的地址,在信息的傳輸過程中,I2C總線上并接的每一模塊電路既是主控器(或被控器),又是發送器(或接收器),這取決于它所要完成的功能。CPU發出的控制信號分為地址碼和控制量兩部分,地址碼用來選址,即接通需要控制的電路,確定控制的種類;控制量決定該調整的類別(如對比度、亮度等)及需要調整的量。這樣,各控制電路雖然掛在同一條總線上,卻彼此獨立,互不相關。
I2C總線在傳送數據過程中共有三種類型信號, 它們分別是:開始信號、結束信號和應答信號。
開始信號:SCL為高電平時,SDA由高電平向低電平跳變,開始傳送數據。
結束信號:SCL為低電平時,SDA由低電平向高電平跳變,結束傳送數據。
應答信號:接收數據的IC在接收到8bit數據后,向發送數據的IC發出特定的低電平脈沖,表示已收到數據。CPU向受控單元發出一個信號后,等待受控單元發出一個應答信號,CPU接收到應答信號后,根據實際情況作出是否繼續傳遞信號的判斷。若未收到應答信號,由判斷為受控單元出現故障。
目前有很多半導體集成電路上都集成了I2C接口。帶有I2C接口的單片機有:CYGNAL的 C8051F0XX系列,PHILIPSP87LPC7XX系列,MICROCHIP的PIC16C6XX系列等。很多外圍器件如存儲器、監控芯片等也提供I2C接口。
I2C總線的時鐘信號
????在I2C總線上傳送信息時的時鐘同步信號是由掛接在SCL時鐘線上的所有器件的邏輯“與”完成的。SCL線上由高電平到低電平的跳變將影響到這些器件,一旦某個器件的時鐘信號變為低電平,將使SCL線上所有器件開始并保護低電平期。此時,低電平周期短的器件的時鐘由低至高的跳變并不影響SCL線的狀態,這些器件將進入高電平等待的狀態。
????當所有器件的時鐘信號都變為高電平時,低電平期結束,SCL線被釋放返回高電平,即所有的器件都同時開始它們的高電平期。其后,第一個結束高電平期的器件又將SCL線拉成低電平。這樣就在SCL線上產生一個同步時鐘。可見,時鐘低電平時間由時鐘低電平期最長的器件決定,而時鐘高電平時間由時鐘高電平期最短的器件決定。
I2C總線的傳輸協議與數據傳送
起始和停止條件
在數據傳送過程中,必須確認數據傳送的開始和結束。在I2C總線技術規范中,開始和結束信號(也稱啟動和停止信號)的定義如圖3所示。
開始信號:當時鐘總線SCL為高電平時,數據線SDA由高電平向低電平跳變,開始傳送數據。
結束信號:當SCL線為高電平時,SDA線從低電平向高電平跳變,結束傳送數據。
開始和結束信號都是由主器件產生。在開始信號以后,總線即被認為處于忙狀態,其它器件不能再產生開始信號。主器件在結束信號以后退出主器件角色,經過一段時間過,總線被認為是空閑的。
?
圖3超始和停止信號圖
?
數據格式
????I2C總線數據傳送采用時鐘脈沖逐位串行傳送方式,在SCL的低電平期間,SDA線上高、低電平能變化,在高電平期間,SDA上數據必須保護穩定,以便接收器采樣接收,時序如圖4所示。
?
圖4 數據傳送時序圖
????I2C總線發送器送到SDA線上的每個字節必須為8位長,傳送時高位在前,低位在后。與之對應,主器件在SCL線上產生8個脈沖;第9個脈沖低電平期間,發送器釋放SDA線,接收器把SDA線拉低,以給出一個接收確認位;第9個脈沖高電平期間,發送器收到這個確認位然后開始下一字節的傳送,下一個字節的第一個脈沖低電平期間接收器釋放SDA。每個字節需要9個脈沖,每次傳送的字節數是不受限制的。
????I2C總線的數據傳送格式是在I2C總線開始信號后,送出的第一字節數據是用來選擇從器件地址的,其中前7位為地址碼,第8位為方向位(R/W)。方向位為“0”表示發送,即主器件把信息寫到所選擇的從器件中;方向位為“1”表示主器件將從從器件讀信息。格式如下:
1??0??1??0??A2???A1???A0??R/W
注:前四位固定為1010。
????開始信號后,系統中的各個器件將自己的地址和主器件送到總線上的地址進行比較,如果與主器件發送到總線上的地址一致,則該器件即被主器件尋址的器件,其接收信息還是發送信息則由第8位(R/W)決定。發送完第一個字節后再開始發數據信號。
響應
????數據傳輸必須帶響應。相關的響應時鐘脈沖由主機產生,當主器件發送完一字節的數據后,接著發出對應于SCL線上的一個時鐘(ACK)認可位,此時鐘內主器件釋放SDA線,一字節傳送結束,而從器件的響應信號將SDA線拉成低電平,使SDA在該時鐘的高電平期間為穩定的低電平。從器件的響應信號結束后,SDA線返回高電平,進入下一個傳送周期。
????通常被尋址的接收器在接收到的每個字節后必須產生一個響應。當從機不能響應從機地址時,從機必須使數據線保持高電平,主機然后產生一個停止條件終止傳輸或者產生重復起始條件開始新的傳輸。如果從機接收器響應了從機地址但是在傳輸了一段時間后不能接收更多數據字節,主機必須再一次終止傳輸。這個情況用從機在第一個字節后沒有產生響應來表示。從機使數據線保持高電平主機產生一個停止或重復起始條件。完整的數據傳送過程如圖5所示。
?
圖5 完整的數據傳送過程
?
????I2C總線還具有廣播呼叫地址用于尋址總線上所有器件的功能。若一個器件不需要廣播呼叫尋址中所提供的任何數據,則可以忽咯該地址不作響應。如果該器件需要廣播呼叫尋址中按需提供的數據,則應對地址作出響應,其表現為一個接收器。
3 總線基本操作
I2C規程運用主/從雙向通訊。器件發送數據到總線上,則定義為發送器,器件接收數據則定義為接收器。主器件和從器件都可以工作于接收和發送狀態。總線必須由主器件(通常為微控制器)控制,主器件產生串行時鐘(SCL)控制總線的傳輸方向,并產生起始和停止條件。SDA線上的數據狀態僅在SCL為低電平的期間才能改變,SCL為高電平的期間,SDA狀態的改變被用來表示起始和停止條件。參見圖1。
?
圖1 串行總線上的數據傳送順序
3.1 控制字節
在起始條件之后,必須是器件的控制字節,其中高四位為器件類型識別符(不同的芯片類型有不同的定義,EEPROM一般應為1010),接著三位為片選,最后一位為讀寫位,當為1時為讀操作,為0時為寫操作。如圖2所示。
?
圖2 控制字節配置
?
3.2 寫操作寫操作分為字節寫和頁面寫兩種操作,對于頁面寫根據芯片的一次裝載的字節不同有所不同。關于頁面寫的地址、應答和數據傳送的時序參見圖3。
?
圖3 頁面寫
?
3.3 讀操作讀操作有三種基本操作:當前地址讀、隨機讀和順序讀。圖4給出的是順序讀的時序圖。應當注意的是:最后一個讀操作的第9個時鐘周期不是“不關心”。為了結束讀操作,主機必須在第9個周期間發出停止條件或者在第9個時鐘周期內保持SDA為高電平、然后發出停止條件。
?
圖4 順序讀
?
4 實例:X24C04與MCS-51單片機軟硬件的實現X24C04是XICOR公司的CMOS 4096位串行EEPROM,內部組織成512×8位。16字節頁面寫。與MCS-51單片機接口如圖5所示。由于SDA是漏極開路輸出,且可以與任何數目的漏極開路或集電極開路輸出“線或”(wire-Ored)連接。上拉電阻的選擇可參考X24C04的數據??手冊。下面是通過I2C接口對X24C04進行單字節寫操作的例程。流程圖及源程序如下:???????????????????????????????????????????????????????????????????????????????????????????????
?????????
圖5 X24C04與51單片機接口
;名稱:BSENT
;描述:寫字節
;功能:寫一個字節
;調用程序:無
;輸入參數:A
;輸出參數:無
??????BSEND: MOV R2,#08H ;1字節8位
SENDA: CLR P3.2????;
????????RLC A??????????????;左移一位
?????MOV P3.3,C?????????;寫一位
SETB P3.2
DJNZ R2,SENDA??????;寫完8個字節?
CLR P3.2???????????;應答信號
SETB P3.3
SETB P3.2
RET
?
?
5??結束語
?在I2C總線的應用中應注意的事項總結為以下幾點 :
??1) 嚴格按照時序圖的要求進行操作,
??2) 若與口線上帶內部上拉電阻的單片機接口連接,可以不外加上拉電阻。
??3) 程序中為配合相應的傳輸速率,在對口線操作的指令后可用NOP指令加一定的延時。
??4)為了減少意外的干擾信號將EEPROM內的數據改寫可用外部寫保護引腳(如果有),或者在EEPROM內部沒有用的空間寫入標志字,每次上電時或復位時做一次檢測,判斷EEPROM是否被意外改寫。
??????????????????????????????????????????????????????????????????????關于IIC總線的操作注意事項
1、對IIC總線的一次操作完之后,需要等待一段時間才能進行第二次操作。否則是啟動不了總線的:)
2、在時鐘線(SCL)為高電平的時候,一定不能動數據線(SDA)狀態,除非是啟動或者結束總線
OC門分析
??????我們先來說說集電極開路輸出的結構。集電極開路輸出的結構如圖1所示,右邊的那個三極管集電極什么都不接,所以叫做集電極開路(左邊的三極管為反相之用,使輸入為"0"時,輸出也為"0")。對于圖1,當左端的輸入為“0”時,前面的三極管截止(即集電極C跟發射極E之間相當于斷開),所以5V電源通過1K電阻加到右邊的三極管上,右邊的三極管導通(即相當于一個開關閉合);當左端的輸入為“1”時,前面的三極管導通,而后面的三極管截止(相當于開關斷開)。
?
我們將圖1簡化成圖2的樣子。圖2中的開關受軟件控制,“1”時斷開,“0”時閉合。很明顯可以看出,當開關閉合時,輸出直接接地,所以輸出電平為0。而當開關斷開時,則輸出端懸空了,即高阻態。這時電平狀態未知,如果后面一個電阻負載(即使很輕的負載)到地,那么輸出端的電平就被這個負載拉到低電平了,所以這個電路是不能輸出高電平的。
再看圖三。圖三中那個1K的電阻即是上拉電阻。如果開關閉合,則有電流從1K電阻及開關上流過,但由于開關閉和時電阻為0(方便我們的討論,實際情況中開關電阻不為0,另外對于三極管還存在飽和壓降),所以在開關上的電壓為0,即輸出電平為0。如果開關斷開,則由于開關電阻為無窮大(同上,不考慮實際中的漏電流),所以流過的電流為0,因此在1K電阻上的壓降也為0,所以輸出端的電壓就是5V了,這樣就能輸出高電平了。但是這個輸出的內阻是比較大的(即1KΩ),如果接一個電阻為R的負載,通過分壓計算,就可以算得最后的輸出電壓為5*R/(R+1000)伏,即5/(1+1000/R)伏。所以,如果要達到一定的電壓的話,R就不能太小。如果R真的太小,而導致輸出電壓不夠的話,那我們只有通過減小那個1K的上拉電阻來增加驅動能力。但是,上拉電阻又不能取得太小,因為當開關閉合時,將產生電流,由于開關能流過的電流是有限的,因此限制了上拉電阻的取值,另外還需要考慮到,當輸出低電平時,負載可能還會給提供一部分電流從開關流過,因此要綜合這些電流考慮來選擇合適的上拉電阻。
如果我們將一個讀數據用的輸入端接在輸出端,這樣就是一個IO口了(51的IO口就是這樣的結構,其中P0口內部不帶上拉,而其它三個口帶內部上拉),當我們要使用輸入功能時,只要將輸出口設置為1即可,這樣就相當于那個開關斷開,而對于P0口來說,就是高阻態了。
什么是漏極開路(OD)?
對于漏極開路(OD)輸出,跟集電極開路輸出是十分類似的。將上面的三極管換成場效應管即可。這樣集電極就變成了漏極,OC就變成了OD,原理分析是一樣的。
另一種輸出結構是推挽輸出。推挽輸出的結構就是把上面的上拉電阻也換成一個開關,當要輸出高電平時,上面的開關通,下面的開關斷;而要輸出低電平時,則剛好相反。比起OC或者OD來說,這樣的推挽結構高、低電平驅動能力都很強。如果兩個輸出不同電平的輸出口接在一起的話,就會產生很大的電流,有可能將輸出口燒壞。而上面說的OC或OD輸出則不會有這樣的情況,因為上拉電阻提供的電流比較小。如果是推挽輸出的要設置為高阻態時,則兩個開關必須同時斷開(或者在輸出口上使用一個傳輸門),這樣可作為輸入狀態,AVR單片機的一些IO口就是這種結構。
?
一些公司的電子類筆試題
1、FPGA和ASIC的概念,他們的區別。
???????答:FPGA是可編程ASIC。ASIC:專用集成電路,它是面向專門用途的電路,專門為一個用戶設計和制造的。
2、建立時間(setup time)與保持時間(hold time)意思?
???????答:建立時間是指觸發器的時鐘信號上升沿到來以前,數據穩定不變的時間。輸入信號應提前時鐘上升沿(如上升沿有效)T時間到達芯片,這個T就是建立時間-Setup time.如不滿足setup time,這個數據就不能被這一時鐘打入觸發器,只有在下一個時鐘上升沿,數據才能被打入觸發器。保持時間是指觸發器的時鐘信號上升沿到來以后,數據穩定不變的時間。如果hold time不夠,數據同樣不能被打入觸發器。???如果不滿足建立和保持時間的話,那么DFF將不能正確地采樣到數據,將會出現metastability(亞穩態)的情況。如果數據信號在時鐘沿觸發前后持續的時間均超過建立和保持時間,那么超過量就分別被稱為建立時間裕量和保持時間裕量。
3、什么是競爭與冒險現象?怎樣判斷?如何消除?
???????答:在組合邏輯中,由于門的輸入信號通路中經過了不同的延時,導致到達該門的時間不一致叫競爭。產生毛刺叫冒險。如果布爾式中有相反的信號則可能產生競爭和冒險現象。解決方法:一是添加布爾式的消去項,二是在芯片外部加電容。
4、同步電路和異步電路的區別是什么?
???????答:同步電路:存儲電路中所有觸發器的時鐘輸入端都接同一個時鐘脈沖源,因而所有觸發器的狀態的變化都與所加的時鐘脈沖信號同步。異步電路:電路沒有統一的時鐘,有些觸發器的時鐘輸入端與時鐘脈沖源相連,這有這些觸發器的狀態變化與時鐘脈沖同步,而其他的觸發器的狀態變化不與時鐘脈沖同步。
5、什么是NMOS、PMOS、CMOS?什么是增強型、耗盡型?什么是PNP、NPN?他們有什么差別?
???????答:MOS場效應管即金屬-氧化物-半導體型場效應管,英文縮寫為MOSFET(Metal-Oxide-Semiconductor Field-Effect-Transistor),屬于絕緣柵型。其主要特點是在金屬柵極與溝道之間有一層二氧化硅絕緣層,因此具有很高的輸入電阻(最高可達1015Ω)。它也分N溝道管和P溝道管,符號如圖1所示。通常是將襯底(基板)與源極S接在一起。根據導電方式的不同,MOSFET又分增強型、耗盡型。所謂增強型是指:當VGS=0時管子是呈截止狀態,加上正確的VGS后,多數載流子被吸引到柵極,從而“增強”了該區域的載流子,形成導電溝道。耗盡型則是指,當VGS=0時即形成溝道,加上正確的VGS時,能使多數載流子流出溝道,因而“耗盡”了載流子,使管子轉向截止。?
???????????PNP與NPN的區別在表面上是以PN結的方向來定義的,實際上是以三極管的結構材料來區分的。PNP是兩邊的棒料是鎵,中間的是硅。鎵是第三主族的元素,其核外為三個電子,硅是第四主族的元素,其核外有四個電子,這樣在兩個PN的方向上的順序是P-N-N的關系;相反NPN是兩邊的材料是硅,中間的是鎵,形成的PN結順序為N-P-N的關系。?
順便說明:P的意思是在PN結上缺少電子,以空穴為主導電的材料,也叫P型材料;N的意思是在PN結上有多余的電子,以電子為主導電的材料,也叫N型材料。
突然找到一個別人整理好的版本:
?
1、同步電路和異步電路的區別是什么?(仕蘭微電子)
異步電路主要是組合邏輯電路,用于產生地址譯碼器、FIFO或RAM的讀寫控制信號脈沖,但它同時也用在時序電路中,此時它沒有統一的時鐘,狀態變化的時刻是不穩定的,通常輸入信號只在電路處于穩定狀態時才發生變化。也就是說一個時刻允許一個輸入發生變化,以避免輸入信號之間造成的競爭冒險。電路的穩定需要有可靠的建立時間和持時間,待下面介紹。
??????同步電路是由時序電路(寄存器和各種觸發器)和組合邏輯電路構成的電路,其所有操作都是在嚴格的時鐘控制下完成的。這些時序電路共享同一個時鐘CLK,而所有的狀態變化都是在時鐘的上升沿(或下降沿)完成的。比如D觸發器,當上升延到來時,寄存器把D端的電平傳到Q輸出端。
在同步電路設計中一般采用D觸發器,異步電路設計中一般采用Latch。
2、什么是同步邏輯和異步邏輯?(漢王筆試)
同步邏輯是時鐘之間有固定的因果關系。異步邏輯是各時鐘之間沒有固定的因果關系。
電路設計可分類為同步電路和異步電路設計。同步電路利用時鐘脈沖使其子系統同步運作,而異步電路不使用時鐘脈沖做同步,其子系統是使用特殊的“開始”和“完成”信號使之同步。由于異步電路具有下列優點--無時鐘歪斜問題、低電源消耗、平均效能而非最差效能、模塊性、可組合和可復用性--因此近年來對異步電路研究增加快速,論文發表數以倍增,而Intel Pentium 4處理器設計,也開始采用異步電路設計。
異步電路主要是組合邏輯電路,用于產生地址譯碼器、FIFO或RAM的讀寫控制信號脈沖,其邏輯輸出與任何時鐘信號都沒有關系,譯碼輸出產生的毛刺通常是可以監控的。同步電路是由時序電路(寄存器和各種觸發器)和組合邏輯電路構成的電路,其所有操作都是在嚴格的時鐘控制下完成的。這些時序電路共享同一個時鐘CLK,而所有的狀態變化都是在時鐘的上升沿(或下降沿)完成的。
3、什么是"線與"邏輯,要實現它,在硬件特性上有什么具體要求?(漢王筆試)
線與邏輯是兩個輸出信號相連可以實現與的功能。在硬件上,要用oc門來實現(漏極或者集電極開路),由于不用oc門可能使灌電流過大,而燒壞邏輯門,同時在輸出端口應加一個上拉電阻。(線或則是下拉電阻)
4、什么是Setup 和Holdup時間?(漢王筆試)
5、setup和holdup時間,區別.(南山之橋)
6、解釋setup time和hold time的定義和在時鐘信號延遲時的變化。(未知)
7、解釋setup和hold time violation,畫圖說明,并說明解決辦法。(威盛VIA 2003.11.06 上海筆試試題)
時間(Setup Time)和保持時間(Hold time)。建立時間是指在時鐘邊沿前,數據信號需要保持不變的時間。保持時間是指時鐘跳變邊沿后數據信號需要保持不變的時間。如果不滿足建立和保持時間的話,那么DFF將不能正確地采樣到數據,將會出現metastability的情況。如果數據信號在時鐘沿觸發前后持續的時間均超過建立和保持時間,那么超過量就分別被稱為建立時間裕量和保持時間裕量。
8、說說對數字邏輯中的競爭和冒險的理解,并舉例說明競爭和冒險怎樣消除。(仕蘭微電子)
9、什么是競爭與冒險現象?怎樣判斷?如何消除?(漢王筆試)
在組合邏輯中,由于門的輸入信號通路中經過了不同的延時,導致到達該門的時間不一致叫競爭。產生毛刺叫冒險。如果布爾式中有相反的信號則可能產生競爭和冒險現象。解決方法:一是添加布爾式的(冗余)消去項,但是不能避免功能冒險,二是在芯片外部加電容。三是增加選通電路
在組合邏輯中,由于多少輸入信號變化先后不同、信號傳輸的路徑不同,或是各種器件延遲時間不同(這種現象稱為競爭)都有可能造成輸出波形產生不應有的尖脈沖(俗稱毛刺),這種現象成為冒險。
10、你知道那些常用邏輯電平?TTL與COMS電平可以直接互連嗎?(漢王筆試)
常用邏輯電平:TTL、CMOS、LVTTL、LVCMOS、ECL(Emitter Coupled Logic)、PECL(Pseudo/Positive Emitter Coupled Logic)、LVDS(Low Voltage Differential Signaling)、GTL(Gunning Transceiver Logic)、BTL(Backplane Transceiver Logic)、ETL(enhanced transceiver logic)、GTLP(Gunning Transceiver Logic Plus);RS232、RS422、RS485(12V,5V,3.3V);TTL和CMOS不可以直接互連,由于TTL是在0.3-3.6V之間,而CMOS則是有在12V的有在5V的。CMOS輸出接到TTL是可以直接互連。TTL接到CMOS需要在輸出端口加一上拉電阻接到5V或者12V。
cmos的高低電平分別為:Vih>=0.7VDD,Vil<=0.3VDD;Voh>=0.9VDD,Vol<=0.1VDD.
ttl的為:Vih>=2.0v,Vil<=0.8v;Voh>=2.4v,Vol<=0.4v.
用cmos可直接驅動ttl;加上拉電阻后,ttl可驅動cmos.
1、當TTL電路驅動COMS電路時,如果TTL電路輸出的高電平低于COMS電路的最低高電平(一般為3.5V),這時就需要在TTL的輸出端接上拉電阻,以提高輸出高電平的值。
2、OC門電路必須加上拉電阻,以提高輸出的搞電平值。
3、為加大輸出引腳的驅動能力,有的單片機管腳上也常使用上拉電阻。
4、在COMS芯片上,為了防止靜電造成損壞,不用的管腳不能懸空,一般接上拉電阻產生降低輸入阻抗,提供泄荷通路。
5、芯片的管腳加上拉電阻來提高輸出電平,從而提高芯片輸入信號的噪聲容限增強抗干擾能力。
6、提高總線的抗電磁干擾能力。管腳懸空就比較容易接受外界的電磁干擾。
7、長線傳輸中電阻不匹配容易引起反射波干擾,加上下拉電阻是電阻匹配,有效的抑制反射波干擾。
上拉電阻阻值的選擇原則包括:
1、從節約功耗及芯片的灌電流能力考慮應當足夠大;電阻大,電流小。
2、從確保足夠的驅動電流考慮應當足夠小;電阻小,電流大。
3、對于高速電路,過大的上拉電阻可能邊沿變平緩。綜合考慮
以上三點,通常在1k到10k之間選取。對下拉電阻也有類似道理
//OC門電路必須加上拉電阻,以提高輸出的搞電平值。
OC門電路要輸出“1”時才需要加上拉電阻不加根本就沒有高電平
在有時我們用OC門作驅動(例如控制一個LED)灌電流工作時就可以不加上拉電阻
OC門可以實現“線與”運算
OC門就是??集電極開路輸出
總之加上拉電阻能夠提高驅動能力。
什么是OC門?
?????????OC門,又稱集電極開路(漏極開路)與非門門電路,Open Collector(Open Drain)。為什么引入OC門?實際使用中,有時需要兩個或兩個以上與非門的輸出端連接在同一條導線上,將這些與非門上的數據(狀態電平)用同一條導線輸送出去。因此,需要一種新的與非門電路--OC門來實現“線與邏輯”。
????????OC門主要用于3個方面:
1、實現與或非邏輯,用做電平轉換,用做驅動器。由于OC門電路的輸出管的集電極懸空,使用時需外接一個上拉電阻Rp到電源VCC。OC門使用上拉電阻以輸出高電平,此外為了加大輸出引腳的驅動能力,上拉電阻阻值的選擇原則,從降低功耗及芯片的灌電流能力考慮應當足夠大;從確保足夠的驅動電流考慮應當足夠小。
2、線與邏輯,即兩個輸出端(包括兩個以上)直接互連就可以實現“AND”的邏輯功能。在總線傳輸等實際應用中需要多個門的輸出端并聯連接使用,而一般TTL門輸出端并不能直接并接使用,否則這些門的輸出管之間由于低阻抗形成很大的短路電流(灌電流),而燒壞器件。在硬件上,可用OC門或三態門(ST門)來實現。用OC門實現線與,應同時在輸出端口應加一個上拉電阻。
3、三態門(ST門)主要用在應用于多個門輸出共享數據總線,為避免多個門輸出同時占用數據總線,這些門的使能信號(EN)中只允許有一個為有效電平(如高電平),由于三態門的輸出是推拉式的低阻輸出,且不需接上拉(負載)電阻,所以開關速度比OC門快,常用三態門作為輸出緩沖器。
11、如何解決亞穩態。(飛利浦-大唐筆試)?
亞穩態是指觸發器無法在某個規定時間段內達到一個可確認的狀態。當一個觸發器進入亞穩態時,既無法預測該單元的輸出電平,也無法預測何時輸出才能穩定在某個正確的電平上。在這個穩定期間,觸發器輸出一些中間級電平,或者可能處于振蕩狀態,并且這種無用的輸出電平可以沿信號通道上的各個觸發器級聯式傳播下去。
解決方法:
1降低系統時鐘頻率
2用反應更快的FF
3引入同步機制,防止亞穩態傳播
4改善時鐘質量,用邊沿變化快速的時鐘信號
關鍵是器件使用比較好的工藝和時鐘周期的裕量要大。亞穩態寄存用d只是一個辦法,有時候通過not,buf等都能達到信號過濾的效果
12、IC設計中同步復位與異步復位的區別。(南山之橋)
同步復位在時鐘沿采復位信號,完成復位動作。異步復位不管時鐘,只要復位信號滿足條件,就完成復位動作。異步復位對復位信號要求比較高,不能有毛刺,如果其與時鐘關系不確定,也可能出現亞穩態。
13、MOORE 與 MEELEY狀態機的特征。(南山之橋)
???Moore狀態機的輸出僅與當前狀態值有關,且只在時鐘邊沿到來時才會有狀態變化. Mealy狀態機的輸出不僅與當前狀態值有關,而且與當前輸入值有關,這
14、多時域設計中,如何處理信號跨時域。(南山之橋)
不同的時鐘域之間信號通信時需要進行同步處理,這樣可以防止新時鐘域中第一級觸發器的亞穩態信號對下級邏輯造成影響,其中對于單個控制信號可以用兩級同步器,如電平、邊沿檢測和脈沖,對多位信號可以用FIFO,雙口RAM,握手信號等。
跨時域的信號要經過同步器同步,防止亞穩態傳播。例如:時鐘域1中的一個信號,要送到時鐘域2,那么在這個信號送到時鐘域2之前,要先經過時鐘域2的同步器同步后,才能進入時鐘域2。這個同步器就是兩級d觸發器,其時鐘為時鐘域2的時鐘。這樣做是怕時鐘域1中的這個信號,可能不滿足時鐘域2中觸發器的建立保持時間,而產生亞穩態,因為它們之間沒有必然關系,是異步的。這樣做只能防止亞穩態傳播,但不能保證采進來的數據的正確性。所以通常只同步很少位數的信號。比如控制信號,或地址。當同步的是地址時,一般該地址應采用格雷碼,因為格雷碼每次只變一位,相當于每次只有一個同步器在起作用,這樣可以降低出錯概率,象異步FIFO的設計中,比較讀寫地址的大小時,就是用這種方法。如果兩個時鐘域之間傳送大量的數據,可以用異步FIFO來解決問題。
我們可以在跨越Clock Domain時加上一個低電平使能的Lockup Latch以確保Timing能正確無誤。
?
1、基爾霍夫定理的內容是什么?
基爾霍夫定律包括電流定律和電壓定律
電流定律:在集總電路中,任何時刻,對任一節點,所有流出節點的支路電流的代數和恒等于零。
電壓定律:在集總電路中,任何時刻,沿任一回路,所有支路電壓的代數和恒等于零。
2、描述反饋電路的概念,列舉他們的應用。
反饋,就是在電子系統中,把輸出回路中的電量輸入到輸入回路中去。
反饋的類型有:電壓串聯負反饋、電流串聯負反饋、電壓并聯負反饋、電流并聯負反饋。
負反饋的優點:降低放大器的增益靈敏度,改變輸入電阻和輸出電阻,改善放大器的線性和非線性失真,有效地擴展放大器的通頻帶,自動調節作用。
電壓負反饋的特點:電路的輸出電壓趨向于維持恒定。
電流負反饋的特點:電路的輸出電流趨向于維持恒定。
3、有源濾波器和無源濾波器的區別
無源濾波器:這種電路主要有無源元件R、L和C組成
有源濾波器:集成運放和R、C組成,具有不用電感、體積小、重量輕等優點。
集成運放的開環電壓增益和輸入阻抗均很高,輸出電阻小,構成有源濾波電路后還具有一定的電壓放大和緩沖作用。但集成運放帶寬有限,所以目前的有源濾波電路的工作頻
轉自:http://www.cnblogs.com/smart_qiang/archive/2009/2/22.html
轉載于:https://www.cnblogs.com/lqf2060/p/4802687.html
總結
以上是生活随笔為你收集整理的IIC、SPI和UART区别的全部內容,希望文章能夠幫你解決所遇到的問題。
- 上一篇: STM32之UART
- 下一篇: 中药学【29】